• Title/Summary/Keyword: 비선형 자유수면 경계조건

Search Result 24, Processing Time 0.022 seconds

Verification of Prediction Technique of Wave-making Resistance Performance for a Ship attached with a Vertical Blade (수직날개를 부착한 선박의 조파저항 성능 추정 기법의 검증)

  • Choi, Hee-Jong;Park, Dong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In this paper the developed prediction technique of wave-making resistance performance for a ship attached with a vertical blade had been verified. Numerical analysis program as a prediction technique had been developed using the Rankine source panel method and the vortex lattice method(VLM). The nonlinearity of the free surface conditions was fully taken into account using the iterative method and the trim and the sinkage of the ship were also considered in the numerical analysis program. Panel cutting method was applied to get hull surface panels. Numerical computations were carried out for a 4000TEU container carrier and the vertical blade was attached 6 different locations astern. To investigate the validity of the numerical analysis program the commercial viscous flow field analysis program FLUENT was used to obtain the viscous flow field around the ship and the model test was performed. The model test results were compared with the numerical analysis results.

Panel Cutting Method a New Approach in Hull Surface Panel Generation (패널절단법 선체표면 패널생성을 위한 새로운 시도)

  • Kim, Jin;Van, Suak-Ho;Park, Il-Ryong;Kim, Kwang-Soo;Choi, Hee-Jong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.638-646
    • /
    • 2006
  • In this paper a new hull-panel generation algorithm named 'Panel Cutting Method' was developed to solve the flow phenomena around a ship advancing on the free surface with a constant speed. In this algorithm the non-linearity of the free surface boundary conditions was taken into account using the iterative method and the raised panel was used at each iteration step. Numerical calculations were performed to investigate the validity of the developed algorithm using the series $60(C_B=0.60)$ hull The wave resistance coefficients, the wave patterns and the wave heights were compared between the computed and the experimental results at Fn=0.25 and 0.316. The comparison showed good agreement between computation and experiment.

A Study on the Flow and Dispersion in the Coastal Unconfined Aquifer (Development and Application of a Numerical Model) (해안지역 비피압 충적 대수층에서의 흐름 및 분산(수치모형의 개발 및 적용))

  • Kim, Sang Jun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • In Korea, the aquifers at the coastal areas are mostly shallow alluvial unconfined aquifers. To simulate the flow and dispersion in unconfined aquifer, a FDM model has been developed to solve the nonlinear Boussinesq equation. Related analysis and verification have been executed. The iteration method is used to solve the nonlinearity, and the model shows 3-D shape because it is a 2-D y model that consider the undulation of water table and bottom. For the verification of the model, the output of flow module is compared to the 1-D analytic solution of Lee (1989) which have the drawdown or uplift boundary condition, and the two results show almost the same value. and the mass balance of dispersion module shows about 10% error. The developed model can be used for the analysis and design of the flow and dispersion in the unconfined aquifers. The model has been applied to the estuary area of Ssangcheon watershed, and the parameters have been deduced as a result : hydraulic conductivity is 90 m/day, and longitudinal dispersivity is 15 m. And the analysis with these parameters shows that the wells are situated in the influence circle of each others except for No. 7 well. Groundwater discharge to sea is $3700m^3/day$. And the chlorine ion ($cl^-$) concentration at the pumping wells increase at least 1000 mg/L if groundwater dam is not exist, so the groundwater dam plays an important role for the prevention of sea water intrusion.

Development and Application of Two-Dimensional Numerical Tank using Desingularized Indirect Boundary Integral Equation Method (비특이화 간접경계적분방정식방법을 이용한 2차원 수치수조 개발 및 적용)

  • Oh, Seunghoon;Cho, Seok-kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.447-457
    • /
    • 2018
  • In this study, a two-dimensional fully nonlinear transient wave numerical tank was developed using a desingularized indirect boundary integral equation method. The desingularized indirect boundary integral equation method is simpler and faster than the conventional boundary element method because special treatment is not required to compute the boundary integral. Numerical simulations were carried out in the time domain using the fourth order Runge-Kutta method. A mixed Eulerian-Lagrangian approach was adapted to reconstruct the free surface at each time step. A numerical damping zone was used to minimize the reflective wave in the downstream region. The interpolating method of a Gaussian radial basis function-type artificial neural network was used to calculate the gradient of the free surface elevation without element connectivity. The desingularized indirect boundary integral equation using an isolated point source and radial basis function has no need for information about the element connectivity and is a meshless method that is numerically more flexible. In order to validate the accuracy of the numerical wave tank based on the desingularized indirect boundary integral equation method and meshless technique, several numerical simulations were carried out. First, a comparison with numerical results according to the type of desingularized source was carried out and confirmed that continuous line sources can be replaced by simply isolated sources. In addition, a propagation simulation of a $2^{nd}$-order Stokes wave was carried out and compared with an analytical solution. Finally, simulations of propagating waves in shallow water and propagating waves over a submerged bar were also carried and compared with published data.