• Title/Summary/Keyword: 비선형 예측

Search Result 1,620, Processing Time 0.036 seconds

Oil Leakage Prediction through Cut Part of Double Elastomeric Seal (이중 탄성중합체 시일의 절단부 오일누유 예측)

  • Taek-Sung Lee;Yeon-Hi Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.165-171
    • /
    • 2023
  • The rotary joint connecting the upper and lower structures of construction machinery and special vehicles transmits hydraulic pressure as the shaft and housing rotate, and multiple seals are assembled to prevent oil leakage into the oil flow channel. Because the seal material is rigid and difficult to assemble, we sought a method to assemble it after cutting. The shapes of the cutting surface are L-shaped and / shaped, and the leakage standard when hydraulic pressure is applied is the contact pressure generated on the cutting surface. The structure and material of the seal are composed of a double elastomer, and nonlinear contact structural analysis is performed when only the high-rigidity PE material is cut. Studies have shown that the shorter the cutting length, the better the leakage prevention and the higher the possibility of leakage to the bottom surface where NBR and PE come into contact rather than the top surface where the PE and the housing come into contact.

A Design of Model Predictive Control and Nonlinear Disturbance Observer-based Backstepping Sliding Mode Control for Terrain Following (지형 추종을 위한 모델 예측제어와 비선형 외란 관측기를 이용한 백스테핑 슬라이딩 모드 제어기법 설계)

  • Dongwoo Lee;Kyungwoo Hong;Chulsoo Lim;Hyochoong Bang;Dongju Lim;Daesung Park;Kihoon Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.495-506
    • /
    • 2024
  • In this study, we propose the terrain following algorithm using model predictive control and nonlinear disturbance observer-based backstepping sliding mode controller for an aircraft system. Terrain following is important for military missions because it helps the aircraft avoid detection by the enemy radar. The model predictive control is used to replace the generating trajectory and guidance with the flight path angle constraint. In addition, the aircraft is affected to the parameter uncertainty and unknown disturbance such as wind near the mountainous terrain. Therefore, we suggest the nonlinear disturbance-based backstepping sliding mode control method for the aircraft that has highly nonlinearity to enhance flight path angle tracking performance. Through the numerical simulation, the proposed method showed the better tracking performance than the traditional backstepping method. Furthermore, the proposed method presented the terrain following maneuver maintaining the desired altitude.

A Study on Ventricular Fibrillation Prediction through neurologic and multi-morphic analyze of intra-cardiac database and Implementation of Simulator (체내 심전도 데이터의 신경학적 분석 및 다형성 판별을 통한 심실세동 예측에 관한 연구 및 시뮬레이터 구현)

  • Shin, K.S.;Kim, J.K.;Park, H.C.;Lee, C.K.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.489-490
    • /
    • 2008
  • 본 고에서는 체내 심실신호를 농하여 신경학적 분석 및 다형성의 측면에서 심실세동이 일어나는 것을 예측하는 분석 알고리즘을 설계하였다. 신경학적 측면에서는 시계열 신호의 Peak to Peak Interval을 예측법과 0.15Hz를 기준으로 HRV 신호의 AR Burg 모델링을 통하여 고주파성과 저주파성을 나누어 교감신경과 부교감신경의 활동성 통한 신경학적 예측법을 제시하였으며 또한 체내 심실신호의 비선형적 특성을 고려한 Fractal Dimension을 생성시킴으로서 주기성의 특성과 다형성 통한 예측법을 제시하였다. 체내 심전도를 기반으로 Simulation 하였으며 각 분석별 조합을 통하여 최적의 예측 구조를 찾고자 하였다. 의학적 의미가 있는 민감도와 특이도를 판별하였으며 예측을 위한 수행시간을 실험하였다. 이를 통하여 자율신경 활성도와 다형성 판별을 조합한 방법이 심실세동 예측을 위한 민감도의 측면에서 가장 우수함을 나타내었고 시뮬레이션을 위만 시뮬레이터(Simulator) UI(User Interface)를 제시하였다.

  • PDF

Flexural Behaviors of PSC Composite Girders in Negative Moment Regions (콘크리트 충전 강관을 갖는 프리스트레스트 합성거더의 부모멘트 구간 거동)

  • Kang, Byeong-Su;Ju, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.169-176
    • /
    • 2006
  • Prestressed composite girder with concrete infilled steel tubes(PSC-CFT girder) is new type of bridge girder which enhances the resisting capacities due to the double composite action of PSC composite girder and concrete infilled tube. The flexural behaviors of PSC-CFT girder in the negative moment regions are investigated based on the experimental observations recently performed on two of 3.6m long specimens. The mechanical and structural roles and failure mechanism of the composite action are discussed through comparing the test results with those numerically predicted by the three methods of one and three-dimensional nonlinear finite element analysis, and section analysis method.

Nonlinear Analysis of Reinforced Concrete Beams Shear-Strengthened with Fiber Reinforced Polymer Composites (FRP로 전단보강된 철근콘크리트 보의 비선형 해석)

  • Kim, Sang-Woo;Hwang, Hyun-Bok;Lee, Bum-Sik;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.835-838
    • /
    • 2008
  • This study presents the nonlinear finite element analysis to predict the behavior of reinforced concrete (RC) beams shear-strengthened with fiber-reinforced polymer laminates (FRP). In this paper, modeling concept for the FRP is introduced to enable the use of finite element methods for the shear analysis of RC beams shear-strengthened with FRP composites. The numerical techniques are used to represent the FRP composite, bond properties between the FRP and the concrete, and the RC beams. According to the proposed modeling methods, a finite element analysis is performed using a two-dimensional nonlinear finite element analysis program, VecTor2, based on the Disturbed Stress Field Model (DSFM). To verify the application of the DSFM for the prediction of the behavior of the shear-critical beams strengthened with FRP composites in shear, a detailed comparison between experimental and numerical results for the response of the RC beams is carried out.

  • PDF

Nonlinearly Distributed Active Earth Pressure on a Translating Rigid Retaining Wall : II. Application (평행이동하는 강성옹벽에 작용하는 비선형 주동토압 : II. 적용성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.191-199
    • /
    • 2003
  • It is known that the distribution of the active earth pressure against a rigid wall is not triangular, but nonlinear, due to arching effects in the backfill. In the farmer paper, a new formulation was proposed for the nonlinear distribution of active earth pressure on a translating rigid retaining wall considering arching effects. In this paper, parametric study is performed to investigate the effect of ${\phi}, {\delta}$ and wall height on the magnitude and distribution of active earth pressure calculated from the proposed equations. In order to check the accuracy of the proposed formulation, the predictions from the equation are compared with both existing full-scale test results and values from existing equations. The comparisons between calculated and measured values show that the proposed equations satisfactorily predict both the earth pressure distribution and the lateral active earth force on the translating wall. Simplified design charts are also proposed for the modified active earth pressure coefficient and fur the height of application of the lateral active force in order to facilitate the use of the proposed equation.

Flexural Behaviors of PSC Composite Girders in Positive Moment Regions (콘크리트 충전 강관을 갖는 프리스트레스트 합성거더의 정모멘트 구간 거동)

  • Kang, Byeong-Su;Sung, Won-Jin;Chang, Young-Kil;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.313-320
    • /
    • 2006
  • Prestressed composite girder with concrete infilled steel tubes(PSC-CFT girder) is new type of bridge girder which enhances the resisting capacities due to the double composite action of PSC composite girder and concrete infilled tube. The flexural behaviors of PSC-CFT girder in the positive moment regions are investigated based on the experimental observations recently performed on two of 4.4m long specimens. The mechanical and structural roles and failure mechanism of the composite action are discussed through comparing the test results with those numerically predicted by the three methods of one- and three-dimensional nonlinear finite element analyses, and section analysis method.

Numerical Evaluation of the Rock Damaged Zone Around a Deep Tunnel (손상모델을 이용한 심부터널 주변암반의 손상영역 평가)

  • 장수호;이정인;이연규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.99-108
    • /
    • 2002
  • The nonlinear-brittle-plastic model derived from experiments as well as elastic and elasto-plastic models was applied to the analysis of the rock damaged zone around a highly stressed circular tunnel. The depths of stress redistribution and disturbed zone as well as the characteristic behaviors predicted from each numerical model were compared, As the magnitudes and stress differences of in situ stresses increased, influences of stress redistribution and stress disturbance on un(tiled region of rock mass also intensified. As a result, larger stress redistribution and disturbed zone as well as greater deviatoric stress and displacement were obtained by the nonlinear-brittle-plastic model rather than other conventional models such as elasto-plastic and elastic models. from such results, it was concluded that as the magnitudes and stress differences of in situ stresses increased, larger rock damaged zone might be predicted by the nonlinear-brittle-plastic model. Therefore, it is thought that the damage analysis may be indispensable far highly stressed tunnels.

A Minimum Crosstalk Wire Spacing Method by Linear Programming (선형프로그래밍에 의한 최소 혼신 배선간 간격조정방법)

  • 전재한;임종석
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.62-72
    • /
    • 2003
  • This paper deals with a crosstalk minimization method by wire spacing. The suggested method uses linear programming method and consider crosstalk of both horizontal segments and vertical segments. In this paper, we suggest a method which can predict the coupling length between vertical segments in the final routing result using longest path algorithm. By the suggested method, we can make LP problem without integer variable. Therefore, it is much faster to solve the problem. In the case of crosstalk optimization, the suggested method optimized peak crosstalk 11.2%, and 3% total crosstalk more than wire perturbation method. The execution time of the suggested method is as fast as it takes 11 seconds when Deutsch is optimized.

Multi-variable Fuzzy Modeling for Combustion Control of Refuse Incineration Plant (쓰레기 소각 플랜트 연소 제어를 위한 다변수 퍼지 모델링)

  • Park, Jong-Jin;Choi, Gyoo-Seok;Ahn, Ihn-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.191-197
    • /
    • 2009
  • In this paper, multi-variable fuzzy model for efficient combustion control of refuse incineration plant is obtained. First, to obtain model of incineration plant which is complex and nonlinear multi-variable fuzzy modeling is performed. Obtained multi-variable fuzzy model predicts outputs of incinerator almost exactly. Then using multi-variable fuzzy model we can build simulator which is used as operation simulator for building of control strategy and training of operator.

  • PDF