• Title/Summary/Keyword: 비선형 연산

Search Result 256, Processing Time 0.022 seconds

Automated Finite Element Analyses for Structural Integrated Systems (통합 구조 시스템의 유한요소해석 자동화)

  • Chongyul Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a few hundred or thousand steps. The algorithm's specifics are demonstrated through a standard cantilever beam example subjected to a concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples illustrate the adaptive algorithm's capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, the study highlights the potential for the scheme's effective application in complex structural dynamic problems, such as those subjected to seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and reliability of the proposed adaptive mesh generation scheme.

Application of Self-Adaptive Meta-Heuristic Optimization Algorithm for Muskingum Flood Routing (Muskingum 홍수추적을 위한 자가적응형 메타 휴리스틱 알고리즘의 적용)

  • Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.29-37
    • /
    • 2020
  • In the past, meta-heuristic optimization algorithms were developed to solve the problems caused by complex nonlinearities occurring in natural phenomena, and various studies have been conducted to examine the applicability of the developed algorithms. The self-adaptive vision correction algorithm (SAVCA) showed excellent performance in mathematics problems, but it did not apply to complex engineering problems. Therefore, it is necessary to review the application process of the SAVCA. The SAVCA, which was recently developed and showed excellent performance, was applied to the advanced Muskingum flood routing model (ANLMM-L) to examine the application and application process. First, initial solutions were generated by the SAVCA, and the fitness was then calculated by ANLMM-L. The new value selected by a local and global search was put into the SAVCA. A new solution was generated, and ANLMM-L was applied again to calculate the fitness. The final calculation was conducted by comparing and improving the results of the new solution and existing solutions. The sum of squares (SSQ) was used to calculate the error between the observed and calculated runoff, and the applied results were compared with the current models. SAVCA, which showed excellent performance in the Muskingum flood routing model, is expected to show excellent performance in a range of engineering problems.

A Study on the Improved Parity Check Receiver for the Extended m-sequence Based Multi-code Spread Spectrum System with Code Set Partitioning and Constant Amplitude Precoding (코드집합 분할 방식의 확장 m-시퀀스 기반 정진폭 멀티코드 대역확산 통신 시스템을 위한 개선된 패리티 검사 기반 수신기에 관한 연구)

  • Han, Jun-Sang;Kim, Dong-Joo;Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.1-11
    • /
    • 2012
  • The multi-code spread spectrum communication system, which spreads data bit stream by multiplexing orthogonal codes, can transmit data in high rate. However it needs the high-cost good linear amplifier because of the multi-level output signal. In order to overcome this drawback several systems making the amplitude of output signal constant with Walsh codes have been proposed. Recently constant amplitude pre-coded multi-code spread spectrum systems using extended m-sequence have been proposed. In this paper we consider an extended m-sequence based constant amplitude multi-code spread spectrum system with code set partitioning. By grouping the orthogonal codes into 4 subsets, not only is the computational complexity of the transceiver reduced but BER performance also improves. It has been shown that parity checking on four detected codes at the receiver can correct code detection error and result in BER performance enhancement. In this paper we propose a improved parity check receiver. We carried out computer simulation to verify feasibility of the proposed algorithm.

Study on the Method for Data Interpolation using the Correlation among Runoff, Water Quality Concentration and Load (유출량, 수질 농도 및 부하량의 상호관계를 이용한 자료보간 방법에 관한 연구)

  • Oh, Chang-Ryeol;Jung, Woo-Cheol;Jin, Young-Hoon;Park, Sung-Chun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1474-1478
    • /
    • 2007
  • 수문 및 수질자료는 일정한 기준에 의한 관측치를 시계열 자료로 기록하거나 전송할 때 다양한 형태의 오차가 발생하게 되며 또한 수문 및 수질자료를 관측하는 측정기기의 고장과 유지관리 등의 어려움으로 다양한 형태의 결측 자료가 발생하고 있다. 이와 더불어 수문 및 수질자료는 시공간적 변동성이 크며 비선형성이 강한 특성을 갖고 있다. 이러한 수문 및 수질 자료를 이용하여 모형을 구축할 경우 다양한 형태의 잡음에 대한 검증 및 잡음저감이 필수적 요건이라 할 수 있다. 따라서 본 연구에서는 영산강 유역의 본류부를 대표하는 나주지점에 대한 유출량과 총유기탄소(TOC) 농도 및 TOC 부하량 예측모형을 개발하였으며, 이를 위한 방법으로는 잡음저감을 위하여 웨이블렛 변환과 인공신경망을 적용하였다. TOC 부하량 자료는 유출량과 TOC 자료간의 함수로서 표현이 가능함에 따라 유출량 및 TOC 자료가 결측되었을 경우 역함수에 의한 계산으로 결측 자료에 대한 보간이 가능하다. 따라서 본 연구의 주안점은 잠음 저감 및 인공신경망에 의해 최적화된 예측 모형이 결측된 유출량과 TOC 자료에 대한 역함수로 정도있는 유출량과 TOC 자료 생성 가능성을 검토하고자 한다. 본 연구의 적용 결과, 유출량 자료가 결측되었을 경우 TOC 및 TOC 부하량 예측으로 유출량 자료에 대한 간접추정 및 결측 자료에 대한 보간의 정도를 평가한 결과 $R^2$는 0.99 이상의 값을 보였다. 또한, TOC 자료가 결측되었을 경우 역시 $R^2$는 비교적 우수한 0.97 이상의 값을 보였다. 따라서 본 연구에서 개발한 유출량 및 TOC, TOC 부하량 예측모형의 개발은 정도있는 유출량 및 TOC 수질 자료의 생성이 가능할 것으로 기대된다.한 물순환 해석을 할 수 있는 기반을 확보 하였으며, 가용한 장 단기간의 관측자료와 물수지 분석 연산식의 추정치를 바탕으로 관측자료에 의한 물수지 분석을 수행하였다. 분석 결과로 산지 소하천 유역인 설마천 시험유역의 각 수문요소의 물이동간의 정량적인 값을 알 수가 있었으며, 앞으로 추가적이고 지속적인 수문모니터링이 운영되고 물순환 해석 모형에 의한 검증이 수행된다면 정량적인 물순환 관계를 규명할 수 있을 뿐만 아니라 이와 관련된 수문요소기술을 확보할 수 있을 것이다.절한 타협과 조정을 필요로 한다. 그러나 절제의 한계를 넘어선다고 생각되거나, 조정의 노력이 불가능하거나, 실패했을 때 폭력적인 행동으로 나타나게 된다. 리차즈(I.A Richards)는 분노와 공포는 일단 겉잡을 수 없는 경향이 있다고 하면서 오늘날 폭력에 대한 요구가 일상의 정서 생활에 있어, 억압을 통한, 빈곤함을 반영하고 있지 않은지 생각해봐야 할 것이라고 충고한다. 조성 가이드라인(안)을 제시하였다.EX>$\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와의 비교를 해보면 상 중 하품의 통합 9개소가 삭제되어 있고, $\ulcorner$동국여지승람$\lrcorner$(東國與地勝覽) 에서는 자기소와 도기소의 위치가 완전히 삭제되어 있다. 이러한 현상은 첫째, 15세기 중엽 경제적 태평과 함께 백자의 수요 생산이 증가하자 군신의 변별(辨別)과 사치를 이유로 강력하게 규제하여 백자의 확대와 발전에 걸림돌이 되었다. 둘째, 동기(銅器)의 대체품으로 자기를 만들어 충당해야할 강제성 당위성 상실로 인한 자기수요 감

  • PDF

Rear Vehicle Detection Method in Harsh Environment Using Improved Image Information (개선된 영상 정보를 이용한 가혹한 환경에서의 후방 차량 감지 방법)

  • Jeong, Jin-Seong;Kim, Hyun-Tae;Jang, Young-Min;Cho, Sang-Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.96-110
    • /
    • 2017
  • Most of vehicle detection studies using the existing general lens or wide-angle lens have a blind spot in the rear detection situation, the image is vulnerable to noise and a variety of external environments. In this paper, we propose a method that is detection in harsh external environment with noise, blind spots, etc. First, using a fish-eye lens will help minimize blind spots compared to the wide-angle lens. When angle of the lens is growing because nonlinear radial distortion also increase, calibration was used after initializing and optimizing the distortion constant in order to ensure accuracy. In addition, the original image was analyzed along with calibration to remove fog and calibrate brightness and thereby enable detection even when visibility is obstructed due to light and dark adaptations from foggy situations or sudden changes in illumination. Fog removal generally takes a considerably significant amount of time to calculate. Thus in order to reduce the calculation time, remove the fog used the major fog removal algorithm Dark Channel Prior. While Gamma Correction was used to calibrate brightness, a brightness and contrast evaluation was conducted on the image in order to determine the Gamma Value needed for correction. The evaluation used only a part instead of the entirety of the image in order to reduce the time allotted to calculation. When the brightness and contrast values were calculated, those values were used to decided Gamma value and to correct the entire image. The brightness correction and fog removal were processed in parallel, and the images were registered as a single image to minimize the calculation time needed for all the processes. Then the feature extraction method HOG was used to detect the vehicle in the corrected image. As a result, it took 0.064 seconds per frame to detect the vehicle using image correction as proposed herein, which showed a 7.5% improvement in detection rate compared to the existing vehicle detection method.

Multi-Variate Tabular Data Processing and Visualization Scheme for Machine Learning based Analysis: A Case Study using Titanic Dataset (기계 학습 기반 분석을 위한 다변량 정형 데이터 처리 및 시각화 방법: Titanic 데이터셋 적용 사례 연구)

  • Juhyoung Sung;Kiwon Kwon;Kyoungwon Park;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.121-130
    • /
    • 2024
  • As internet and communication technology (ICT) is improved exponentially, types and amount of available data also increase. Even though data analysis including statistics is significant to utilize this large amount of data, there are inevitable limits to process various and complex data in general way. Meanwhile, there are many attempts to apply machine learning (ML) in various fields to solve the problems according to the enhancement in computational performance and increase in demands for autonomous systems. Especially, data processing for the model input and designing the model to solve the objective function are critical to achieve the model performance. Data processing methods according to the type and property have been presented through many studies and the performance of ML highly varies depending on the methods. Nevertheless, there are difficulties in deciding which data processing method for data analysis since the types and characteristics of data have become more diverse. Specifically, multi-variate data processing is essential for solving non-linear problem based on ML. In this paper, we present a multi-variate tabular data processing scheme for ML-aided data analysis by using Titanic dataset from Kaggle including various kinds of data. We present the methods like input variable filtering applying statistical analysis and normalization according to the data property. In addition, we analyze the data structure using visualization. Lastly, we design an ML model and train the model by applying the proposed multi-variate data process. After that, we analyze the passenger's survival prediction performance of the trained model. We expect that the proposed multi-variate data processing and visualization can be extended to various environments for ML based analysis.