• Title/Summary/Keyword: 비선형 슬라이딩 평면

Search Result 18, Processing Time 0.019 seconds

The Sliding Control using Nonlinear Sliding Surfaces (비선형 슬라이딩 평면을 이용한 슬라이딩 제어)

  • Han, Jong-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1133-1138
    • /
    • 2012
  • In the paper, design of nonlinear sliding surfaces which are based on optimal control is studied, The state trajectory by the input of optimal control was obtained by Frobenius theorem and matrix decomposition method, was set the nonlinear sliding surfaces of the system. The states is maintained to sliding surfaces from initial states. As the result, robustness of the system can be guaranteed throughout an entire response of the system starting form the initial time instance, the uncertainty and external disturbance that can occur during the reaching time is removed, the problem of large control input was solved, and setting the sliding surfaces optimal path was able to reduce the tracking time. The validity of the proposed control scheme is shown in computer simulation for inverted pendulum.

Fuzzy sliding mode controller design using the reaching velocity to sliding surface (슬라이딩 평면 도달 속도를 이용한 퍼지 슬라이딩 모드 제어기 설계)

  • Lee, Chung-Woo;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2474-2476
    • /
    • 2005
  • 본 논문에서는 슬라이딩 평면에 도달 조건을 이용하여 균일한 계단 반응을 얻을 수 있는 퍼지 슬라이딩 모드 제어기 설계방법을 제시한다. 슬라이딩 평면에 도달할 조건을 퍼지 논리로 설계하여 과도한 입력이 플랜트에 가해지지 않도록 비선형 제어기를 설계한다. 슬라이딩 평면 도달 속도의 가변 조건을 퍼지화 하여 퍼지슬라이딩 모드 제어기를 설계한다. 각각의 제어기에 대하여 고주파 공진이 있는 2차 강성 모델에 대하여 모의 실험을 실시하여 그 특성을 비교하였다.

  • PDF

Stepwise Fuzzy Moving Sliding Surface for Second-Order Nonlinear Systems (2차 비선형 시스템에 대한 계단형 퍼지 이동 슬라이딩 평면)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.524-530
    • /
    • 2002
  • This note suggests a stepwise fuzzy moving sliding surface using Sugeno-type fuzzy system and presents a sliding mode control scheme using it. The fuzzy system has the angle of state error vector and the distance from the origin in the phase plane as inputs and a first-order linear differential equation as output. The surface initially passes arbitrary initial states and subsequently moves towards a predetermined surface via rotating or shifting. This method reduces the reaching and tracking time and improves robustness. Conceptually the slope of the Proposed fuzzy moving sliding surface increases stepwise in the stable region of the phase plane. The surface, however, rotates continuously because the surface is a fuzzy system. The asymptotic stability of the fuzzy sliding surface is proved. The validity of the proposed control scheme is shown in computer simulation for a second-order nonlinear system.

Fuzzy Disturbance Observer based Multiple Sliding Surface Control of Nonlinear Systems with Mismatched Disturbance (부정합조건 외란을 갖는 비선형 시스템의 퍼지 외란 관측기 기반 다중 슬라이딩 평면 제어)

  • Lee, Sang-Yun;Seo, Hyungkeun;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • This paper proposes fuzzy disturbance observer based multiple sliding surface control scheme for nonlinear systems with mismatched disturbance. In order to stabilize nonlinear systems with mismatched disturbance, a controller based on multiple sliding surface control scheme is designed. In addition, a fuzzy disturbance observer is used to estimate the disturbance. Using the fuzzy disturbance observer, "explosion of terms" problem and chattering problem were solved. The stability of the proposed control scheme is analyzed by Lyapunov stability theory. For the verification, we apply the proposed method to numerical examples and compare its result with that of the applied nonlinear disturbance observer based sliding mode control.

Design of a Discrete time Sliding mode controller Using a Pole-Placement (극 배치를 이용한 이산시간 슬라이딩 모드 제어기의 설계)

  • Chae, Su-Kyoung;Choi, Jae-Mo;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2182-2186
    • /
    • 2003
  • 본 논문은 원하는 슬라이딩모드의 고유값을 얻을 수 있도록 하고 슬라이딩 평면에 수렴하는 속도를 결정하는 이산시간 슬라이딩 모드 제어기를 설계하는 방법을 제시한다. 기존에 연속시간에서만 적용되어졌던 Ackermann의 공식을 이산시간에서 슬라이딩 평면과 선형제어기를 설계 하는데 사용함으로써 원하는 폐루프의 고유값을 얻을 수 있도륵 하였으며 비선형제어기가 선형 제어기로 설계됨으로써 채터링 현상을 줄이도록 하였다. 또한 슬라이딩 평면 근처에 밴드를 도입함으로써 공진의 여기를 최소화하면서 빠른 응답을 갖도록 하였다. 제안된 방법의 효율성을 보여주기 위해 Simulation과 실험결과를 보여줬다.

  • PDF

Sliding Mode Prediction Based Tracking Control for Mobile Robots (슬라이딩 평면 예측에 기반한 이동 로봇의 경로 추종 제어)

  • Moon, Ssu-Rey;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.448-449
    • /
    • 2008
  • 본 논문에서는 이동 로봇의 경로 추종을 위해서, 비선형 모델 예측 슬라이딩 모드 제어(nonlinear model predictive strung mode control) 기법을 제안한다. 본 논문에서 제안한 방법에서는 미래의 슬라이딩 평면을 예측하고, 이에 따른 최적화된 제어기를 유도함으로써 슬라이딩 모드 제어기 단독으로 사용하는 제언 시스템에 비해 성능을 향상시킬 수 있다. 마지막으로 컴퓨터 시뮬레이션을 통해 본 논문에서 제안한 제어기의 성능을 검증하고자한다.

  • PDF

The Design of Sliding Mode Controller with Nonlinear Sliding Surfaces (비선형 스위칭 평면을 이용한 슬라이딩모드 제어기 설계)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3622-3625
    • /
    • 2009
  • This study develops a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. By appling TS algorithm to the regulation of the rionlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method. This proposed scheme has better performance than the conventional method in reaching time, parameter variation and extraneous disturbance. The effectiveness of the proposed control scheme is verified by simulation results.

Fuzzy Sliding Mode Control of Nonlinear System Based on T-S Fuzzy Dynamic Model (T-S 퍼지 모델을 이용한 비선형 시스템의 퍼지 슬라이딩 모드 제어)

  • Yoo, Byung-Kook;Yang, Keun-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.112-117
    • /
    • 2004
  • This paper suggests the design and analysis of the fuzzy sliding mode control for a nonlinear system using Takagi-Sugeno(T-S) fuzzy model. In this control scheme, identifying procedure that the input gain matrices in a T-S fuzzy model are manipulated into the same one is needed. The input disturbances generated in the identifying procedure are resolved by incorporating the disturbance treatment method of the conventional sliding mode control. The proposed control strategy can also treat the input disturbances that can not be linearized in the linearization procedure of T-S fuzzy modeling. Design example for the nonlinear system, an inverted pendulum on a cart, demonstrates the utility and validity of the proposed control scheme.

Design of Sliding Hyperplanes in Nonlinear Variable Structure Systems with Uncertainties (불확실성을 갖는 비선형 가변구조시스템의 슬라이딩 초평면 설계)

  • 박동원;최승복;김재문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1985-1996
    • /
    • 1994
  • A new design method of sliding hyperplanes is proposed in the synthesis of a variable structure controller for robust tracking of general nonlinear multi-input-output(MIMO) uncertain systems of relative degree higher than two. Input/ output(I/O) linearzation is firstly undertaken by employing the concept of relative degree and minimum phase followed by the construction of sliding mode controllers. Sliding hyperplanes are then derived from the inherent properties of companion matrix and ideal sliding mode characterized in I/O linearized system. Subsequently, the gradient magnitudes of the sling hyperplanes are determined in an optimal manner by considering a quadratic performance index to be evaluated at two phases; a reaching phase and a sliding phase. The proposed design methodology is relatively straightforward and systematic compared with conventional strategies such as geometric approach or pole assignment technique. A nonlinear governor and exciter control problem for a power system is adopted herein in order to demonstrate the design efficiency and also favorable and robust control performances.

An LMI-Based Sliding Surface Design Method for Linear Systems with Mismatched Uncertainties (비정합 불확실성을 갖는 선형 시스템을 위한 LMI 기반 슬라이딩 평면 설계법)

  • Choi, Han-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.409-413
    • /
    • 2006
  • In this paper, we propose a new sliding surface design method for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. In terms of linear matrix inequalities (LMIs), we give a sufficient condition for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the sliding mode dynamics. And, we give an LMI parameterization of such linear sliding surfaces together with switched feedback control laws. Our LMI condition can be less conservative than the existing conditions and our result supplement the existing results. Finally, we give a numerical example showing that our method can be better than the previous results.