동적 시스템의 동정은 시스템의 관측된 데이터를 가지고 동적 모델의 수학적 모델을 찾는 문제를 다루는 것이다. 기존의 고전적인 방법으로는 차분 방정식(ARX 또는 ARMAX) 또는 상태 공간 표현에 관한 계수들을 추정하기 위해서 회귀 기법 등을 사용하였다. 그러나 이러한 고전적인 방법들은 파라미터가 비선형이고, 실세계 문제에서 모델링 오차나 측정 잡음을 수반하게 되면 탐색의 어려움을 가지게 된다. 따라서 이러한 문제점을 극복하고자 퍼지 이론이나 신경망 이론 둥이 이용되었으나 본 논문에서는 비선형 동적 시스템의 파라미터 동정에 최근 복잡한 최적화 문제를 해결하는 도구로 점점 관심을 받고 있는 유전 알고리즘을 동정 알고리즘으로 제안하고, 비선형 동적 시스템의 파라미터 동정에 유전 알고리즘을 응용한 몇 가지 예를 제시하고자 한다.
분위수 회귀모형은 설명변수가 반응변수의 조건부 분위수 함수에 어떻게 관계되는지 탐색함으로서 많은 유용한 정보를 제공한다. 그러나 설명변수와 반응변수가 비선형 관계를 갖는다면 선형형태를 가정하는 전통적인 분위수 회귀모형은 적합하지 않다. 또한 고차원 자료 또는 설명변수간 상관관계가 높은 자료에 대해서 변수선택의 방법이 필요하다. 이러한 이유로 본 연구에서는 벌점화 분위수 회귀나무모형을 제안하였다. 한편 제안한 방법의 분할규칙은 과도한 계산시간과 분할변수 선택편향 문제를 극복한 잔차 분석을 기반으로 하였다. 본 연구에서는 모의실험과 실증 예제를 통해 제안한 방법의 우수한 성능과 유용성을 확인하였다.
본 연구에서는 시간-침하량 계측 데이터를 기반으로 한 기존 침하 예측 이론식을 확인하였다. 기존 계측 기반 침하 예측 이론식 중 쌍곡선법 및 Asaoka법이 정확도가 높게 나타났으며, 이외 방법은 정확도가 낮은 것으로 확인되었다. 이러한 분석 결과를 토대로 기존 침하 예측 방법의 한계점을 도출하였으며, 이러한 한계점을 보완할 수 있는 개선방안으로써 가중 비선형 회귀분석을 통한 침하 예측 방법을 제시하였다.
본 연구에서는 조건부 핵밀도함수와 CAFPE(Corrected Asymptotic Final Prediction Error) 차수결정 방법에 근거한 비매개변수적 비선형 자기회귀 (Nonlinear AutoRegressive, NAR) 모형을 소개하고 이를 SOI(Southern Oscillation Index)에 적용하였다. SOI 자료에 대해서 선형 AR 모형을 적용하였으나 잔차에 대한 검정결과 이분산성(heteroscedasticity)을 나타내었다. 또한 BDS(Brock-Dechert-Sheinkman) 검정에서 비선형성이 존재함을 확인하였다. 따라서 NAR 모형에 SOI 자료를 적용시켰다. CAFPE를 이용하여 가장 적합한 모형으로 지체 1, 2와 4가 선택되었으며 조건부 평균함수를 추정하여 SOI 자료를 모의한 결과 잔차에 대해서 정규성과 이분산성 가정이 Jarque-Bera 검정과 ARCH-LM 검정에서 각각 기각되었으며 또한 조건부 표준편차함수의 최적 차수로 3, 8과 9가 CAPFE를 통해 선택되었다. 조건부 평균함수와 표준편차함수를 모두 고려한 모형에 대한 잔차 검정 결과 잔차의 I.I.D 가정을 만족하였으며 특히, BDS 검정에서 신뢰구간 95%와 99%에서 모두 만족한 결과를 나타내었다. 마지막으로 전체의 15%에 해당하는 SOI 자료에 대해서 One-Step 예측을 수행하였으며 선형 모형에 비해 평균제곱예측오차가 7% 적게 나타났다. 따라서, NAR 모형은 여타의 매개변수적 방법과 달리 모형 선택에 있어 자유로우며 비선형성을 고려할 수 있는 모형으로서 SOI 자료와 같은 비선형 자료를 위한 모의방법으로 선형 모형에 비해 많은 장점을 가지고 있다.
Intergovernmental Panel on Climate Change(IPCC)에 따르면 지난 1세기 반 동안 전 세계 평균 기온은 약 1℃가 상승하였으며, 온실가스 축적에 따라 평균기온은 21세기 중반에서 21세기 말까지 1~3℃가 증가할 것으로 전망되고 있다. 이러한 기온의 상승으로 인한 하천의 수온 변화는 수중에서 온도에 민감한 생화학적 반응의 변화를 유발하여 수질 및 수생태 변화에 영향을 미칠 수 있다. 따라서 효과적인 수질 및 수생태 관리를 위해서는 기온과 수온 사이의 명확한 관계 정립을 통해 수질변화를 정확하게 예측하는 것이 중요하다. 본 연구에서는 국내·외로 널리 활용되고 있는 SWAT(Soil and Water Assessment Tool, SWAT) 모형을 통해 기온-수온 회귀식이 하천 수질변화에 미치는 영향을 정량적으로 분석하고자 하였다. 그러나 기존 SWAT 모형에서의 기온-수온 회귀식은 미국 유역의 환경 특성을 바탕으로 도출되었기 때문에 국내 유역에 적용하기에 한계점이 있다. 따라서 본 연구의 목적은 국내 유역에서의 실측 기온자료와 수온자료를 사용하여 SWAT 모형 내 기온-수온 회귀식을 재도출하고 적용성을 평가하는 것이다.
본 연구에서는 서울지역 오존의 기상상태와 추세경향에 따른 고농도 현상을 모수적 방법인 비선형회귀모형(nonlinear regression model)으로 모형화 하였다. 여기서는 1995년부터 1999년까지의 자료로부터 오존과 고농도 현상에 영향을 줄 수 있는 기상상태와 추세경향 등을 순차적으로 추가함으로써 고농도 현상을 예측하는 모형을 추정하였다.
Recently, the End-milling processing is needed the high-precise technique to get a good surface roughness and rapid time in manufacturing of precision machine parts and electronic parts. The optimum surface roughness has an effect on end-milling working condition such as, cutting direction, spindle speed, feed rate and depth of cut, and so on. It needs to form the correlation of working conditions and surface roughness. Therefore this study was carried out to presume of surface roughness on end-milling working condition of Al7075 by regression analysis. The results was shown that the coefficient of determination($R^2$) of regression equation had a fine reliability of 87.5% and nonlinear regression equation of surface rough was made by multiple regression analysis.
강화학습의 한가지 방법인 Q-learning은 최근에 Linear Quadratic Regulation(이하 LQR) 문제에 성공적으로 적용된 바 있다. 특히, 시스템 모델의 파라미터에 대한 구체적인 정보없이 적절한 입ㆍ출력만으로 학습을 통해 문제의 해결이 가능하므로 상황에 따라 매우 실용적인 방법이 될 수 있다. 뉴럴-큐 기법은 이러한 Q-learning의 Q-value를 MLP(multilayer perceptron) 신경망의 출력으로 대치시켜, 비선형 시스템의 최적제어 문제를 다룰 수 있게 한 방법이다. 그러나, 뉴럴-큐 기법은 신경망의 구조를 먼저 결정한 후 역전파 알고리즘을 이용해 학습하는 절차를 행하므로, 시행착오를 통해 신경망 구조를 결정해야 한다는 점, 역전파 알고리즘의 적용에 따라 신경망의 연결강도 값들이 지역적 최적해로 수렴한다는 점등의 문제점이 있다. 본 논문에서는 뉴럴-큐 학습의 도구로 KFD회귀를 이용하여 Q 함수의 근사 기법을 제안하고 관련 수식을 유도하였다. 그리고, 모의 실험을 통하여, 제안된 뉴럴-큐 방법의 적용 가능성을 알아보았다.
반응표면분석에서 다반응값의 최적화 문제는 단반응값 최적화문제보다 복잡하다. 이런 다반응값 문제에서 반응변수들이나 설명변수 상호간의 관계나 중요성 등을 평가하는 것은 중요하다. 이러한 평가를 위하여 biplot를 이용할 수 있는데, 1차 회귀모형이 적합치 않은 경 우, 2차 회귀모형을 위한 순차적 실험계획을 이용하여 2차 회귀 모형에 대응되는 biplot를 그려 선형 및 비선형효과를 알 수 없게 된다.
하도 홍수추적과 관련하여 하천에서의 시 공간적 홍수파를 해석하는데 수리학적 방법과 수문학적 방법이 일반적으로 많이 이용되어 왔다. 수문학적 홍수추적 방법은 수리학적 방법에 비해 수행하기에는 비교적 간단하면서도 합리적인 정확성을 지닌다. 수문학적 홍수추적 방법 중 광범위하게 적용되어지고 있는 Muskingum 모형의 중요 변수인 저류상수는 유하시간과 매우 유사한 값을 가진다. 이러한 점에 착안하여 본 연구에서는 저류상수를 산정하기 위해 HEC-RAS를 이용한 유하시간을 산정하고, 하도거리, 하도경사, 유량 자료를 이용하여 유하시간에 대한 비선형 회귀곡선식을 개발하였다. 비선형 회귀곡선에 의해서 산정된 저류상수를 Muskingum 모형에 대입하여 구한 유출량은 HEC-RAS 1차원 부정류 모의를 적용하여 산정된 유출량과 비교하였다. 이와 함께 본 연구에서는 가중인자에 대한 영향 및 상하류 사이의 구간 분할에 대해서 검토하였는데, 그 결과 가중인자 값이 클수록 첨두홍수량이 올라가는 것으로 나타났으며, 구간 분할을 많이 할수록 RMSE가 감소하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.