• Title/Summary/Keyword: 비선형회귀모형

Search Result 273, Processing Time 0.022 seconds

비선형회귀분석에서 편잔차그림에 대한 연구

  • 강명욱;김정혜
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.571-580
    • /
    • 1998
  • 선형회귀분석에서 새로운 변수가 모형에 추가될 때 변수변환의 필요성과 적절한 변환의 형태를 진단하는 기능이 있다고 알려져 있는 편잔차그림과 덧편잔차그림을 비선형회귀모형에 적용하고 이 그림들이 기능을 제대로 수행할 수 있는 조건을 알아보았다.

  • PDF

Estimations of the student numbers by nonlinear regression model (비선형 회귀모형을 이용한 학년별 학생수 추계)

  • Yoon, Yong-Hwa;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • This paper introduces the projection methods by nonlinear regression model. To predict the student numbers, a log model and an involution model as the kind of a trend-extrapolation method are used. Empirical evidence shows that a projection by log model is better than by involution model with the confidence interval estimations for the coefficients of determination.

Estimation of nonlinear GARCH-M model (비선형 평균 일반화 이분산 자기회귀모형의 추정)

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.831-839
    • /
    • 2010
  • Least squares support vector machine (LS-SVM) is a kernel trick gaining a lot of popularities in the regression and classification problems. We use LS-SVM to propose a iterative algorithm for a nonlinear generalized autoregressive conditional heteroscedasticity model in the mean (GARCH-M) model to estimate the mean and the conditional volatility of stock market returns. The proposed method combines a weighted LS-SVM for the mean and unweighted LS-SVM for the conditional volatility. In this paper, we show that nonlinear GARCH-M models have a higher performance than the linear GARCH model and the linear GARCH-M model via real data estimations.

Predicting Stock Prices using Book Values and Earnings-per-Share Based on Linear Regression Model and Neural Network Model (장부가치와 주당 이익을 이용한 선형회귀모형과 신경망모형의 주가예측)

  • Choi, Sung-Sub;Koo, Hyeng-Keun;Kim, Young-Kwon
    • The Korean Journal of Financial Management
    • /
    • v.17 no.1
    • /
    • pp.161-180
    • /
    • 2000
  • 본 연구는 주가를 예측하는데 있어서 선형 회귀모형을 이용하는 방법과 비선형 인공신경망 모형을 이용하는 방법을 비교 분석하여, 어떤 모형이 더 우수한 예측성과를 내는지를 검증한다. 자본시장에서 투자자들은 접근하는 정보가 다르고 각기 상이한 예측 변수들을 토대로 나름대로의 예측치를 만들어 낸다. 이렇게 볼 때 개별 투자자들이 이용하는 다양한 정보집합을 결합하여 단일의 뛰어난 정보집합을 만들어내는 것은 매우 어려운 과제이다. 따라서 본 연구에서는 이용 가능한 소수의 예측 변수들을 어떤 방식으로 결합하는 것이 예측오차의 분산을 최소화할 수 있는지에 대한 현실적인 접근방법을 모색하고자 한다. 거시경제변수나 시장자료를 입력변수로 사용한 기존 연구와는 달리 본 연구에서는 재무제표 정보를 입력변수로 사용하였다 즉, 대차대조표의 최종요약치인 주당 지분의 장부가치와 손익계산서의 최종요약치인 주당 순이익을 입력변수로 사용했으며 1991년부터 1995년까지의 추정(학습)결과를 토대로 모형을 선택하여 1996년의 제무제표 정보로 1997년의 주가를 예측하는 것이 본 연구의 과제이다. 연구결과, 대체로 선형회귀모형에 비해 비선형 신경망 모형이 예측오차의 분산을 감소시키는 것으로 나타났다.

  • PDF

Analyzing financial time series data using the GARCH model (일반 자기회귀 이분산 모형을 이용한 시계열 자료 분석)

  • Kim, Sahm;Kim, Jin-A
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.475-483
    • /
    • 2009
  • In this paper we introduced a class of nonlinear time series models to analyse KOSPI data. We introduce the Generalized Power-Transformation TGARCH (GPT-TGARCH) model and the model includes Zakoian (1993) and Li and Li (1996) models as the special cases. We showed the effectiveness and efficiency of the new model based on KOSPI data.

  • PDF

A comparison study on regression with stationary nonparametric autoregressive errors (정상 비모수 자기상관 오차항을 갖는 회귀분석에 대한 비교 연구)

  • Yu, Kyusang
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.157-169
    • /
    • 2016
  • We compare four methods to estimate a regression coefficient under linear regression models with serially correlated errors. We assume that regression errors are generated with nonlinear autoregressive models. The four methods are: ordinary least square estimator, general least square estimator, parametric regression error correction method, and nonparametric regression error correction method. We also discuss some properties of nonlinear autoregressive models by presenting numerical studies with typical examples. Our numerical study suggests that no method dominates; however, the nonparametric regression error correction method works quite well.

KOSPI수익률의 평활전이회귀모형 추정

  • Yu, Il-Seong
    • The Korean Journal of Financial Studies
    • /
    • v.13 no.1
    • /
    • pp.77-92
    • /
    • 2007
  • 한국증권시장을 포함한 대부분의 지역증권시장이 미국 뉴욕증권시장의 움직임에 반응하거나 동조현상을 보인다는 사실은 이미 경험적으로 혹은 통계적으로 널리 수용되고 있다. 본 연구는 그러한 반응에 비선형성이 존재하는가를 일별 주가수익률을 데이터로 활용하여 우선적으로 검정한다. 그러한 검정결과에 입각하여 비선형성을 내재화시킨 계량분석모형이 주가수익률을 설명하고 예측하는데 도움을 줄 수 있는가를 확인한다. 본 연구에서는 이러한 비선형성에 관련된 정보를 유도하기 위하여 평활전이(자기)회귀분석모형(STR)을 이용한다. STR모형은 국면전환을 야기하는 전이변수를 명시적으로 확인할 수 있고 다양한 국면전환형태를 모형에 수용할 수 있는 장점을 가지고 있다. KOSPI수익률의 비선형성에 대한 검정결과는 귀무가설인 선형성이 기각되는 것으로 나타났으며, 그러한 비선형성의 형태는 미국증권시장이 하강기에 처한 경우에 상승기에 처한 상태보다 민감한 동조현상을 보이는 것으로 나타났다. 하지만 추정된 STR모형이 주가의 변동을 설명하거나 예측하는데 여타의 모형보다 나은 능력을 가지는가에 대해서는 긍정적인 결과를 얻지 못하였다.

  • PDF

Introduction of a Nonlinear Regression Analysis System NLIN2000 (비선형회귀분석을 위한 통계소프트웨어 NLIN2000)

  • 강근석;심규호
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.173-184
    • /
    • 2004
  • A statistical software for nonlinear regression analysis, NLIN2000, is introduced. This software, operated tinder the Window systems, has many user-friendly functions and Provides various statistics. As an upgraded version of the Previous Program operated under the DOS system, NLIN2000 provides easier steps for model specification and fitting process than any other statistical packages. Also it has a database system for model functions which has addition and deletion options. While it can be a useful research tool for statisticians, NLIN2000 can be used practically also by researchers in many other scientific fields, who needs nonlinear regression analysis for their study.

Bayesian Mode1 Selection and Diagnostics for Nonlinear Regression Model (베이지안 비선형회귀모형의 선택과 진단)

  • 나종화;김정숙
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.139-151
    • /
    • 2002
  • This study is concerned with model selection and diagnostics for nonlinear regression model through Bayes factor. In this paper, we use informative prior and simulate observations from the posterior distribution via Markov chain Monte Carlo. We propose the Laplace approximation method and apply the Laplace-Metropolis estimator to solve the computational difficulty of Bayes factor.

回歸分析에 있어서의 多共線性과 名稱을 保全시키는 資料變換 技法

  • 兪浣
    • Journal of the Korean Statistical Society
    • /
    • v.8 no.2
    • /
    • pp.109-116
    • /
    • 1979
  • 두 개의 변수의 대체효과(substitution effect)를 연구하기 위하여 수요 또는 공급의 모형을 만들었을 경우 이에 관련된 변수들의 이름이 중요시 된다. 실제 관측 자료를 사용하였을 경우 흔히 일어나는 다공선성(multicollinearity) 문제를 다루기 위한 대안으로써 선형회귀선을 예로 들어 능형회귀기법(ridge regression technique)과 요인분석기법(factor analytic technique)을 소개하였으며 이에서 얻어지는 계수(coefficient)를 OLS 추정치로 설명하기 위하여 원래의 자료를 변환하였다. 실지 수요와 공급의 모형이 비선형일 경우 일반적으로 능형회귀나 요인분석을 쓰지 못한다는 점을 감안, 이러한 방법을 자료의 변환방법으로 설명함으로써 비선형모형에서도 다공선성문제를 위하여 능형회귀분석법이나 요인분석기법을 사용할 수 있도록 하였다.

  • PDF