• Title/Summary/Keyword: 비부착

Search Result 2,263, Processing Time 0.024 seconds

The Analysis for Reinforced Concrete Beams Strengthened with Externally Unbonded Prestressed CFRP Plates (비부착 탄소섬유판 긴장재로 외부 긴장 보강된 철근콘크리트 보의 해석)

  • Park, Jong Sup;Jung, Woo Tai;Park, Young Hwan;Kim, Chul Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.439-445
    • /
    • 2008
  • This paper suggests a modified bond reduction coefficient considering the average CFRP (Carbon Fiber Reinforced Polymer) strain concept for the unbonded prestressed CFRP plate strengthening system. The strengthened length and the pure bending length were seen to influence the variation of the strain of unbonded CFRP plate. Therefore, a new bond reduction coefficient considering such effect was suggested. Comparison with the experimental data revealed that the analytic results obtained by considering the proposed bond reduction coefficient were effective in estimating the strain of the unbonded CFRP plate in the CFRP plate prestressing system.

Capacity Evaluation of Joint Reinforcement with Debonding Area at the Interface Steel to Concrete Surface (접합부 철근의 비부착에 따른 성능평가)

  • Jung, Woo-Young;Ha, Keum-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.67-70
    • /
    • 2011
  • 해안에 위치한 철근콘크리트 구조물 및 사회 간접 시설물들은 염해피해에 대한 우려가 있다. 염해피해로 인한 철근의 부식현상이 발생하면 철근과 콘크리트 부착성능의 저하로 인한 부재의 내력감소를 가져 올 수 있다. 따라서 본 연구에서는 염해부식이 진행되어 콘크리트와 철근간의 부착 및 비부착 여부에 따른 성능을 확인하기 위하여 완전 비부착된 보-기둥 접합부를 철근부착용 고무튜브를 이용하여 제작하였다. 제작된 실험체로 준정적 반복횡하중을 이용한 실험을 통해 성능평가를 수행하였다. 비부착된 보-기둥 접합부의 비선형 해석을 하기 위해 4절점 래티스 모델로 개선하여 적용하였다.

  • PDF

A Study on the Prediction of Ultimate Stress of Tendon in Unbonded Prestressed Concrete Beams without Slip (비부착 PSC 보에서 슬립이 없는 강선의 극한 응력 예측에 관한 연구)

  • Hong, Sung-Su;Yoo, Sung-Won;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.537-548
    • /
    • 2008
  • Recently, the prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. The purpose of the present paper is therefore to evaluate the flexural behavior and to propose the equation of ultimate tendon stress by performing static flexural test according to span/depth, concrete compression strength, reinforcement ratio and the effect of existing bonded tendon. From experimental results, for cracking, yielding and ultimate load, the effect of reinforcement ratio was more effective than concrete compression strength, and the beams having high strength concrete had a good performance than having low concrete, but there was no difference between high strength and low strength. And as L/dp was larger, test beams had a long region of ductility. This means that unbonded tendon has a large contribution after reinforcement yielding. Especially, the equation of ACI-318 was not match with test results and had no correlations. After analysis of test results, the equation of ultimate unbonded tendon stress without slip was proposed, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of unbonded tendons without slip, analysis and design.

Characteristics of Bond Behavior According to Confinement and Stiffness Ratios of External Confining Jackets (외부구속자켓의 구속비와 강도비에 따른 콘크리트 부착거동의 특성)

  • Choi, Eunsoo;Jung, Chunsung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • This study analyzes the characteristics of bond behavior of concrete, which is confined by external jackets such as shape memory alloy (SMA) and steel, according to confinement and stiffness ratios of the external jackets. For this purpose, SMA wires with 1.0 mm diameter and steel plates with 1.0 and 1.5 thickness are used to induce difference on confinement and stiffness ratios and, then, bond strength and behavior are analyzed considering the two factors. When external jakcets are used for the concrete cylinders, bond strengths of specimens increase and their bond failures are transferred from splitting failure to pull-out failure and, thus, the external jackets show confining effect. Bond strenght of concrete increase with increasing confinement and stiffness ratios of the external jackets. However, maximal circumferential strains decrease linearly with increasing the two values.

Ductile Strengthening of Reinforced Concrete Beams by Partially Unbonded NSM Hybrid FRP Rebars (부분 비부착 NSM Hybrid FRP 보강근에 의한 철근콘크리트보의 연성보강)

  • Lee, Cha-Don;Chung, Sang-Mo;Won, Jong-Pil;Lee, Sng-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.143-153
    • /
    • 2003
  • New strengthening method based on Near Surface Mounted technique (NSM) is suggested, which can overcome the brittle nature of failure inherent to those reinforced concrete beams strengthened with FRP composite materials. The suggested technique secures ductile failure of reinforced concrete beams by having the strengthening Hybrid FRP rebars unbonded in parts. Experiments were performed in order to compare structural behaviors of strengthened beams with and without unbending along the Hybrid FRP rebars. Test results showed that only those beams strengthened by partially unbonded NSM failed in ductile manner. Theoretical expressions were derived for the minimum unbonded length of Hybrid FRP rebars with which ultimate strength of the reinforced concrete beam with partially unbonded NSM could be reached. The suggested partially unbonded NSM technique is expected to significantly improve the structural behavior of the strengthened beam with FRP composite materials.

Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters (강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.781-788
    • /
    • 2009
  • Mechanical properties of steel-concrete interface were evaluated on the basis of experimental observations. The properties included bond strength, unbounded and bonded friction angles, residual level of friction angle, mode I fracture energy, mode II bonded fracture energy and unbonded slip-friction energy under different levels of normal stress, and shape parameters to define geometrical shape of failure envelope. For this purpose, a typical type of constitutive model of describing steel-concrete interface behavior was presented based on a hyperbolic three-parameter Mohr-Coulomb type failure criterion. The constitutive model depicts the strong dependency of interface behavior on bonding condition of interface, bonded or unbounded. Values of the interface parameters were determined through interpretation of experimental results, geometry of failure envelope and sensitivity analysis. Nonlinear finite element analysis that incorporates steel-concrete interface as well as material nonlinearities of concrete and steel were performed to predict the experimental results.

Nonlinear Analysis of Concrete Girders Strengthened with Unboded Prestressed CFRP Plates (비부착 프리스트레스트 CFRP 판으로 보강된 콘크리트 거더의 비선형 해석)

  • Choi, Kyu-Chon;Lee, Jae Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.495-502
    • /
    • 2010
  • A study for the nonlinear analysis method of flexural behavior of concrete girders strengthened with unbonded prestressed CFRP plates is presented. The concrete girders strengthened with unbonded prestressed CFRP plates exhibit more complex nonlinear behavior due to the slip between the concrete girder and the CFRP plates than the case of bonded CFRP plates. The unbonded CFRP plate is modeled as an assemblage of the curved elements both ends of which are rigidly linked to the nodes of fibered frame elements. The slip effect of the unbonded CFRP plate is taken into account using the force equilibrium relationship at each node. To evaluate the validity and the capability of the proposed analysis method, the ultimate analysis results of the concrete beams strengthened with unbonded prestressed CFRP plate are compared with the experimental results obtained from other investigators. The proposed analysis method is found to predict ultimate behaviors of these beams fairly well. Additionally the time-dependent deformations of the concrete beam seems to have little influence on the ultimate behaviors of concrete beams strengthened with unbonded prestressed CFRP plate, and the cracks of the concrete beam which occurred before strengthening it with CFRP plate are found to have almost no influence on the ultimate capacity of the beam.

Evaluation of Ultimate Stress of Unbonded Tendon in Prestressed Concrete Members (II) -Proposed Design Equation using Strain Compatibility (프리트레스트 콘크리트 부재에서 비 부착 긴장재의 극한응력 평가에 관한 연구(II))

  • 임재형;문정호;음성우;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.105-114
    • /
    • 1997
  • 본 연구는 비부착 긴장재를 갖는 부재에 대한 일련의 연구중 두 번째에 해당한다. 첫 번째 연구(1)에서는 기존연구의 제안식과 현행의 ACI 규준의 문제점을 고찰하고 기존의 총 167개 실험결과와 비교·분석하였다. 본 연구에서는 소성힌지 길이 개념과 변형도 적합조건에 의해서 비부착 긴장재의 응력을 평가할 수 있는 방법에 대한 검토를 통하여, 새로운 설계식을 제안하였다. 이는 이론적인 분석에 의한 변수설정과 기존 실험결과를 이용한 중회귀분석법을 사용하였다. 그리고 제안된 설계식을 기존의 식들과 비교하여 좋은 결과를 얻었으며, 제안된 설계식의 특성을 다음과 같이 설명하였다. (1)비부착 긴장재의 응력산정시 유효프리스트레스, 일반철근의 양, 작용하중의 형태 등은 중요한 변수로 작용할 수 있으므로 설계식에 고려하는 것이 바람직하다. (2)비부착 긴장재의 응력산정식은 현행 ACI 규준식과는 다르게 fc'/ p항의 제곱근과 비례하는 함수관계에 있다. (3)스팬-춤비가 비부착 긴장재의 응력에 미치는 영향은 소성힌지 길이의 개념에 의해서 역학적으로 타당하게 설명할 수 ldT다.

Adhering Characteristics of Diesel Spray Impinging to a Flat Wall (평판에 충돌하는 디젤분무의 부착특성)

  • Ko, K.N.;Huh, J.C.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.21-25
    • /
    • 2005
  • 디젤분무가 연소실 벽에 충돌할 때의 연료부착특성을 파악하기 위하여 평판에 충돌하는 디젤 분무의 부착특성을 실험적으로 연구하였다. 투명 아크릴판을 이용하여 연료액막과 충돌분무를 동시에 촬영하였고, 충돌분무의 성장에 따른 연료액막의 성장도 함께 측정되었다. 부착된 연료는 연료액막 및 부착액적들로 나누어서 측정할 수 있었으며 그 결과 연료액막 주변에 무수한 연료액적이 부착함을 알 수 있었다. 시간에 따른 부착연료비를 예측하기 위하여 몇 가지 가정이 사용되었다. 그 결과 시간경과에 따른 부착연료비를 충돌거리 10mm, 30mm, 50mm에 대하여 예측할 수 있었다.

  • PDF

Flexural Capacity Evaluation of Reinforced Concrete Members with Corroded Steel Expansion and Debonding Area at the Interface Steel to Concrete Surface (철근부식 팽창 및 비부착 구간에 따른 RC 부재의 휨 성능 평가)

  • Jung, Woo-Young;Beak, Sang-Hoon;Yeon, Jong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.7-13
    • /
    • 2008
  • This paper presents experimental and analysis studies about both the corroded steel expansion and the variation of poor bonding range between steel and concrete. A loss of overall bonding capacity at the concrete-steel interface is evaluated experimentally and crack patterns at the bottom of the concrete are presented here. Steel-concrete interface is covered by rubber due to present local loss of the concrete-steel interface bonding capacity. In case of crack analysis performed by commercial FEM programs. we investigated crack‘s pattern and location. Finally, it is concluded that overall flexural capacity of the reinforced concrete structure is increased by the corroded steel expansion and is dependent of the bonding range at the steel- concrete interface. These results give an important factor to decide a life of reinforced concrete structures.