• Title/Summary/Keyword: 비보호 횡단보도

Search Result 3, Processing Time 0.023 seconds

An Analysis Procedure for Evaluating Pedestrian Scramble Construction (대각선 횡단보도 설치 타당성 검토를 위한 효과분석 과정 수립)

  • Han, Yeo-Hui;Kim, Yeong-Chan;Yang, Chung-Heon
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.73-83
    • /
    • 2011
  • Installation of pedestrian scramble is recently increasing due to pedestrian-oriented transportation policies issued in local governments. Pedestrian scramble is able to emphasize safety issues by reducing conflicts between pedestrians and vehicles when an exclusive pedestrian phase is employed. In spite of its positive property, pedestrian scramble has several negative points: an increase of a cycle length, a decrease of green time ratio, and an increase of total delay. This study delivers the impacts of pedestrian scrambles in terms of pedestrian convenience and traffic mobility. Authors analyzed the changes of traffic delays by comparing the installation and no installation of pedestrian scramble at an intersection by varying several variables: signal timings, traffic volumes, the number of lanes, and the number of pedestrian conflicts. The paper presents an analysis procedure as a guideline that assists practitioners in selection of appropriate intersections at where pedestrian scrambles are implemented.

Study on the Appropriate Time for Leading Pedestrian Intervals (보행자 우선 출발신호의 적정 시간 산출 연구)

  • Kim, Daekyung;Yoon, Suyoung;Yoon, Jinsoo;Kim, Sang-Ock;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • When pedestrians cross a pedestrian crossing during a pedestrian signal, there is a problem that pedestrians are exposed to the danger of traffic accidents due to permissive-left turning and right-turning vehicles. In order to solve this problem, there is an increasing demand to improve the traffic signal system to increase pedestrian safety at the signal crossing. This study aims to examine the feasibility of introducing a leading pedestrian interval(LPI) to prevent conflict between unprotected left and right turn vehicles and pedestrians. In this study, the need for LPI was surveyed by experts and the general public. As a result of the survey, many opinions indicated that the introduction of LPI was necessary. In addition, after selecting the non-protected left and right turn pilot operation targets, LPI was installed on two signal intersections. After installation, the speed analysis of the arrival vehicle in the pedestrian crossing and the violation rate of the pedestrian signal were analyzed. As a result of analysis, when the walking signal was equalized, the speed of the arriving vehicle in the pedestrian crossing was reduced, and the violation rate of the walking signal was improved.

A Dynamic Signal Metering Algorithm Development for Vehicles and Pedestrians at Roundabouts (차량 및 보행자를 고려한 회전교차로 감응식 신호미터링 알고리즘 개발)

  • Lee, Sol;Ahn, Woo-Young;Lee, Seon-Ha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.53-66
    • /
    • 2017
  • In order to improve traffic flow and vehicular safety, installation of roundabouts is encouraging recently. Roundabouts are generally installed at which traffic flow and pedestrian flow is relatively low intersections. Roundabouts reduce vehicle speed, minimize vehicle weaving, and reduce critical conflict points. For these reasons, roundabouts are generally operated unprotected pedestrian crosswalk, thus a shortcoming for pedestrian safety always exists at roundabouts. The purpose of this study is developing a dynamic signal metering algorithm for traffic and pedestrian at four-way-approach with two-lane roundabouts in which three different operation algorithms(fixed-time pedestrian, vehicle signal metering, and vehicle and pedestrian signal metering) are suggested and its performance is tested by using VISSIM. The results of the fixed pedestrian signal operation show that there is a big average delay increase in general and that increases up to 51.4 seconds/vehicle(42.5%) when the total number of approaching vehicle is 3,800 vehicle/hour. However, the results of the simultaneous dynamic signal metering operation for the vehicle and pedestrian crossing with push button show that there is a substantial average delay reduction up to 40.6 seconds/vehicle(42.7%) when the total number of approaching vehicle is 3,000 vehicle/hour.