• Title/Summary/Keyword: 비반응 유동

Search Result 34, Processing Time 0.022 seconds

A CFD Study for Rocket Exhaust Flow using Single Species, Unreacted Flow Model (단일화학종 비반응 해석 모델을 사용한 로켓 연소후류 유동해석 연구)

  • Kang, Sun-Il;Huh, Hwan-Il
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.126-134
    • /
    • 2012
  • The Single Species, Unreacted Flow Model which is effectively applicable on the computational analysis of rocket exhaust flow is introduced in this paper. The basic concept of this model had been originated from chemically frozen analysis of hot air but it was complemented by compensating molecular weight and specific heat which was obtained CEA code analysis of exhaust plume. Comparing single species, unreacted model with the finite chemistry model, unreacted model can reduce calculation time to 1/5 while it makes similar simulation results.

3-D LES for Reacting and Non-reacting Flow Characteristics on a Swirl Stabilized Annular Combustor (스월 환형연소기의 반응 및 비반응 유동 특성 연구를 위한 3차원 Large Eddy Simulation)

  • Kim, Jong-Chan;Sung, Hong-Gye;Cha, Bong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.449-452
    • /
    • 2008
  • Flow difference between reacting and non-reacting case in a swirl stabilized annular combustor is investigated using 3D Large Eddy Simulation with flamelet turbulent combustion model. The combustor of concern is the LM6000, lean premixed dry low-NOx annular combustor, developed by GEAE. Boundary conditions are based on experimental data. Heat release as a result of combustion put the dilatation of density in primary combustion zone highly increased so that the main swirl stream behind of a swirl cup stretched further downstream than that of non-reacting case. The oval shape of core flow in cross-section to flow direction, which clearly observed in non-reacting case, tends to be circle, and small vorticities in wide range in non-reacting case disappears, but the size of iso-vorticity increase in reacting case.

  • PDF

Large Eddy Simulation of Non-reacting Flow in Bluff-body Combustor (Bluff-body 연소기의 비반응 유동에 대한 대 와동 모사)

  • Kong, Min-Seog;Hwang, Cheol-Hong;Lee, Chang-Eon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.250-257
    • /
    • 2005
  • Large eddy simulation{LES) methodology used to model a bluff-body stabilized non-reacting flow. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using $k-{\epsilon}$ model as well as experimental data. The results showed that the LES and RANS qualitatively well predicted the experimental results, such as mean axial, radial velocities and turbulent kinetic energy. However, in the quantitative analysis, the LES showed a better prediction performance than RANS. Specially, the LES well described characteristics of the recirculation zones, such as air stagnation point and jet stagnation point. Finally, the unsteady phenomena on the Bluff-body, such as the transition of recirculation region and vorticity, was examined with LES methodology.

  • PDF

석탄가스화기내의 미분탄 입자를 동반한 유동장 해석

  • 이진욱;마수만;김원배
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.5-14
    • /
    • 1995
  • 본 연구는 석탄가스화기내의 비반응 유동장에 대한 연구로서, 순수유동장 및 미분탄입자를 포함한 이상유동장에 대한 전산해석을 수행하였다. 가스화기내의 물리적 현상을 기술하는 Navier-Stokes 방정식을 유한차분법에 의하여 해석하고 그 결과를 나타내었다. 특히 선회유동의 영향에 의한 미분탄입자의 거동 및 재순환영역의 특성에 대하여 상세히 고찰하였다. 해석결과에 의하면 가스화기내에서는 몇개의 재순환영역이 형성됨을 알 수 있었다. 비반응유동장의 해석결과이지만, 선회유동은 화염안정화에 긍정적인 영향을 줄 수 있을 것으로 추측되는 결과를 보였다.

  • PDF

Numerical Analysis of Turbulent Swirling Cold-Flow in a Cyclonic Coal Gasifier (선회분류층형 석탄가스화기내의 비반응 난류 선회유동장 해석)

  • 이진욱;나혜령;윤용승
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.137-144
    • /
    • 1997
  • Turbulent swirling cold-flow in a cyclonic gasifier has been analyzed by numerical analysis. Comparison of two dimensional and three dimensional analyses has shown that concept of equivalent slit is appropriate for the two dimensionalization of three dimensional phenomena. Flow characteristics have been scrutinized by varying swirl number which is a crucial parameter in determining the flow pattern of the cyclonic gasifier. Reactive flow field has been estimated by using theoretical swirl number and equivalent slit width for reactive flow. Results show that proper flow field for the reactive coal gasification can be formed by controlling the exit area and azimuthal location of coal burners.

  • PDF

분류층 석탄가스화기 비반응 난류 유동장 수치해석

  • 이선경;정진도;김종진;지평삼;장동순
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.28-38
    • /
    • 1994
  • 분류층 가스화기 설계를 위한 일차연구로서 가스화기 이차공기 주입방법에 따른 비반응 난류장에 대한 수치해석을 검사체적에 기초한 유한차분방법을 이용하여 수행하였다. 압력과 속도의 연계문제는 SIMPLEC 알고리즘을, 레이놀즈 전단력은 k-$\varepsilon$ 난류모델을 사용하였다. 입자궤적 계산은 공기역학적 항력만을 고려하였으며 비선형적인 공기저항력에 의한 난류변동상관모델은 고려치 않았다. 이차공기 주입방법(parallel injection과 nonparallel 3$0^{\circ}C$ injection)에 따른 수치해석을 수행하여 Ar tracer의 질량분율에 대한 실험자료와 비교하여 만족할 만한 결과를 얻었으며 이차공기의 주입각 및 기타 제반변수에 따른 유동장 변화를 분석하였다.

  • PDF

Numerical Simulation of the Evolution and Structure of a Single Vortex in Reacting and Non-reacting Jet Flow Fields (반응 및 비반응 제트 유동장에서 단일 와동의 전개 및 구조에 대한 수치모사)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Chang-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.28-37
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the evolution and vortical structure of a single vortex in reacting and non-reacting jet flow fields. A predictor-corrector-type numerical scheme with a low Mach number approximation was used, and a two-step global reaction mechanism was adopted as the combustion model. Through the comparisons of single vortex behaviors in reacting and non-reacting jet flow fields, it was found that the evolution characteristics and vortical structure of the single vortex were significantly influenced by a outer vortex that was generated from the buoyance effect as well as the chemical heat release. Furthermore, it was also identified that the differences of the vortical structure in reacting and non-reacting jet flow fields were mainly attributed to the thermal expansion, Baroclinic torque and buoyance effect.

Numerical Study for Solid-Gas Two Phase Flow in a Coal Gasifier (석탄 가스화기내의 기체-고체 이상유동장에 대한 수치해석 연구)

  • 이진욱;윤용승
    • Journal of Energy Engineering
    • /
    • v.4 no.3
    • /
    • pp.331-337
    • /
    • 1995
  • 석탄가스화 복합발전 시스템은 고효율 및 우수한 환경보전성으로 인하여 차세대 화력발전 시스템으로 각광받고 있다. 본 연구는 석탄가스화기내의 비반응 유동장에 대한 연구로서, 순수유동장 및 미분탄입자를 포함한 이상유동장에 대한 전산해석을 수행하였다. 가스화기내의 유동장을 기술하는 Navier-Stokes방정식을 유한차분법에 의하여 해석하고 그 결과를 나타내었다. 특히 선회유동의 영향에 의한 미분탄입자의 거동 및 재순환영역의 특성에 대하여 선회강도의 함수로 고찰하였다. 해석결과에 의하면 가스화기내에서는 며책의 재순환영역이 형성됨을 알 수 있었다. 비반응유동장의 해석결과이지만, 선회유동은 화염안정화에 긍정적인 영향을 줄 수 있을 것으로 추측되는 결과를 보였다.

  • PDF

Effect of the distance between the adjacent injectors on penetration and mixing characteristics of the jet in supersonic crossflow (수평 배치된 분사구의 배치 간격에 따른 초음속 유동장 내 분사 유동의 침투 및 혼합 특성)

  • Kim, Sei Hwan;Lee, Hyoung Jin
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.81-89
    • /
    • 2018
  • In the present study, a numerical investigation was conducted to analyze the effect of the distance between the adjacent injectors on the characteristics of flow structure, fuel penetration, and air/fuel mixing. Numerical results were validated with experimental data using a single injection. Subsequently, the same injector geometry and properties were applied on a non-reacting flow simulation with multiple injectors. Total pressure loss, penetration height, and mixing efficiency were compared with the distance between the injectors. The results showed that each injected gas merged into a single stream, resulting in the 2D-like flow fields under the condition of short distance and lower mixing efficiency along with higher total pressure loss. When the distance between the injectors increased, total pressure loss reduced and mixing efficiency increased due to the weakening of interactions between the injected gases.

Non-Reacting Flow Structure of a Low Swirl Combustor with respect to Inlet Velocities (저선회 연소기의 입구 속도에 따른 비반응 유동구조 분석)

  • Jeong, Hwanghui;Lee, Bok Jik;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.56-63
    • /
    • 2018
  • In low swirl combustors the flame is lifted above the nozzle to achieve balance between the flame speed and velocity field at the exit of the nozzle. Characterization of the flame liftoff height is important because it affects the stability of the combustor and degradation of the nozzle material. In experiments, a counter-intuitive trend of flame liftoff heights with respect to inlet velocities was observed. To elucidate the complicated flow field in a low swirl combustor having swirl vanes and a turbulence generator, a series of numerical simulations of non-reacting flows was conducted by varying the inlet velocity. The flow structures at the exit of the nozzle with respect to the inlet velocities are investigated to support the observation in the experiments.