• Title/Summary/Keyword: 비모수 모형

Search Result 395, Processing Time 0.038 seconds

A comparison and prediction of total fertility rate using parametric, non-parametric, and Bayesian model (모수, 비모수, 베이지안 출산율 모형을 활용한 합계출산율 예측과 비교)

  • Oh, Jinho
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.677-692
    • /
    • 2018
  • The total fertility rate of Korea was 1.05 in 2017, showing a return to the 1.08 level in the year 2005. 1.05 is a very low fertility level that is far from replacement level fertility or safety zone 1.5. The number may indicate a low fertility trap. It is therefore important to predict fertility than at any other time. In the meantime, we have predicted the age-specific fertility rate and total fertility rate by various statistical methods. When the data trend is disconnected or fluctuating, it applied a nonparametric method applying the smoothness and weight. In addition, the Bayesian method of using the pre-distribution of fertility rates in advanced countries with reference to the three-stage transition phenomenon have been applied. This paper examines which method is reasonable in terms of precision and feasibility by applying estimation, forecasting, and comparing the results of the recent variability of the Korean fertility rate with parametric, non-parametric and Bayesian methods. The results of the analysis showed that the total fertility rate was in the order of KOSTAT's total fertility rate, Bayesian, parametric and non-parametric method outcomes. Given the level of TFR 1.05 in 2017, the predicted total fertility rate derived from the parametric and nonparametric models is most reasonable. In addition, if a fertility rate data is highly complete and a quality is good, the parametric model approach is superior to other methods in terms of parameter estimation, calculation efficiency and goodness-of-fit.

Performance Comparison of Cumulative Incidence Estimators in the Presence of Competing Risks (경쟁위험 하에서의 누적발생함수 추정량 성능 비교)

  • Kim, Dong-Uk;Ahn, Chi-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.357-371
    • /
    • 2007
  • For the time-to-failure data with competing risks, cumulative incidence functions (CIFs) are commonly estimated using nonparametric methods. If the cases of events due to the cause of primary interest are infrequent relative to other cause of failure, nonparametric methods may result in rather imprecise estimates for CIF. In such cases, Bryant et al. (2004) suggested to model the cause-specific hazard of primary interest parametrically, while accounting for the other modes of failure using nonparametric estimator. We represented the semiparametric cumulative incidence estimator and extended to the model of Weibull and log-normal distribution. We also conducted simulations to access the performance of the semiparametric cumulative incidence estimators and to investigate the impact of model misspecification in log-normal cause-specific hazard model.

Comparison of estimation methods for expectile regression (평률 회귀분석을 위한 추정 방법의 비교)

  • Kim, Jong Min;Kang, Kee-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.343-352
    • /
    • 2018
  • We can use quantile regression and expectile regression analysis to estimate trends in extreme regions as well as the average trends of response variables in given explanatory variables. In this paper, we compare the performance between the parametric and nonparametric methods for expectile regression. We introduce each estimation method and analyze through various simulations and the application to real data. The nonparametric model showed better results if the model is complex and difficult to deduce the relationship between variables. The use of nonparametric methods can be recommended in terms of the difficulty of assuming a parametric model in expectile regression.

Parametric nonparametric methods for estimating extreme value distribution (극단값 분포 추정을 위한 모수적 비모수적 방법)

  • Woo, Seunghyun;Kang, Kee-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.531-536
    • /
    • 2022
  • This paper compared the performance of the parametric method and the nonparametric method when estimating the distribution for the tail of the distribution with heavy tails. For the parametric method, the generalized extreme value distribution and the generalized Pareto distribution were used, and for the nonparametric method, the kernel density estimation method was applied. For comparison of the two approaches, the results of function estimation by applying the block maximum value model and the threshold excess model using daily fine dust public data for each observatory in Seoul from 2014 to 2018 are shown together. In addition, the area where high concentrations of fine dust will occur was predicted through the return level.

A comparison study on regression with stationary nonparametric autoregressive errors (정상 비모수 자기상관 오차항을 갖는 회귀분석에 대한 비교 연구)

  • Yu, Kyusang
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.157-169
    • /
    • 2016
  • We compare four methods to estimate a regression coefficient under linear regression models with serially correlated errors. We assume that regression errors are generated with nonlinear autoregressive models. The four methods are: ordinary least square estimator, general least square estimator, parametric regression error correction method, and nonparametric regression error correction method. We also discuss some properties of nonlinear autoregressive models by presenting numerical studies with typical examples. Our numerical study suggests that no method dominates; however, the nonparametric regression error correction method works quite well.

Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition (비정상성 확률분포 및 재현기간을 고려한 홍수빈도분석)

  • Lee, Sang-Ho;Kim, Sang Ug;Lee, Yeong Seob;Kim, Hyeong Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.610-610
    • /
    • 2015
  • 수공구조물의 설계에서는 홍수빈도분석을 통해 산정된 특정 재현기간에서의 확률수문량이 설계기준으로 사용된다. 그러나 최근 기후변화로 인해 이상기후 현상이 심해짐에 따라 수문기상자료의 정상성을 가정하는 기존의 홍수빈도분석은 변화되는 수문현상을 적절히 표현하지 못하는 경우가 많다. 본 연구에서는 확률분포의 모수가 시간에 따라 변화하는 비정상성 빈도분석기법을 적용하였으며 확률분포의 모수들을 최우추정법으로 추정하였다. 또한, 분위수 추정과정에서도 비정상성을 고려하여 정상성 가정에서 산정된 재현기간 및 위험도와 비교분석하였다. 확률분포는 GEV 분포를 사용하여 정상성 및 비정상성 모형 4개를 구축하였다. 특히, 비정상성 모형은 위치모수만 선형 경향성을 가지는 경우, 규모모수만 선형경향성을 가지는 경우, 위치 및 규모모수가 선형경향성을 가지는 경우의 3가지로 구분하여 적용하였다. 구축된 4개의 모형 중 적합모형을 선정하기 위해 우도비 검정과 Akaike 정보기준을 사용하였으며 적합모형선정 절차를 체계적으로 구축하고 적용하여 적합모형을 선정하였다. 본 연구에서 구축된 비정상성 홍수빈도분석 기법은 우리나라의 8개 다목적댐 (충주댐, 소양강댐, 안동댐, 임하댐, 합천댐, 대청댐, 섬진강댐, 주암댐)으로부터 취득된 과거 관측 댐 유입량을 대상으로 하여 적용되었다. 우도비 검정과 Akaike 정보기준을 이용한 적합 모형 선정 결과 합천댐과 섬진강댐이 비정상성 GEV 모형에 적합한 것으로 분석되었고, 나머지 지점의 다목적댐들은 정상성 모형에 적합한 것으로 분석되었다. 합천댐과 섬진강댐의 경우 비정상성 가정에서 산정된 재현기간이 정상성 가정에서 산정된 재현기간보다 매우 작게 산정되었으며 확률수문량과 위험도는 크게 산정되었다. 적합모형으로 정상성 모형이 선정된 6개의 다목적댐 중 소양강댐은 Mann-Kendall 비모수 경향성 검정 결과 유의하지는 않지만 비교적 큰 선형경향성을 가지고 있었다. 비록 비정상성 모형이 적합모형으로 선정되지는 않았지만 소양강댐에 비정상성 모형을 가정하여 재현기간과 확률수문량, 위험도를 분석한 결과 정상성 모형 가정에서 산정한 결과와 상당한 차이가 있었다. 이와 같은 결과는 수문자료의 정상성과 비정상성을 고려한 홍수빈도분석이 향후 수공구조물의 설계에 있어서 신뢰성 있는 확률수문량을 결정하는데 도움이 될 것으로 판단된다.

  • PDF

Model selection for unstable AR process via the adaptive LASSO (비정상 자기회귀모형에서의 벌점화 추정 기법에 대한 연구)

  • Na, Okyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.909-922
    • /
    • 2019
  • In this paper, we study the adaptive least absolute shrinkage and selection operator (LASSO) for the unstable autoregressive (AR) model. To identify the existence of the unit root, we apply the adaptive LASSO to the augmented Dickey-Fuller regression model, not the original AR model. We illustrate our method with simulations and a real data analysis. Simulation results show that the adaptive LASSO obtained by minimizing the Bayesian information criterion selects the order of the autoregressive model as well as the degree of differencing with high accuracy.

시간의 흐름에 따른 무조건부 주가분산과 주가형성

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.14 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • 주식 수익률이 정상적 과정이 아니라 비정상적 과정에 의해서 생성되고 있다는 사실이 여러 실증 분석에서 제시되고 있다. 시계열의 평균이 시간의 흐름에 따라 변하면 이 시계열은 비정상적 과정에 의하여 생성된다. 시간의 흐름에 따라 평균이 변하는 비정상 시계열은 단위근과 공적분에 의하여 시계열의 운동을 모형화하고 있다. 한편 시계열의 비정상성은 분산이 시간의 흐름에 따라 변할 때에도 발생한다. 시간의 흐름에 따라 무조건부 분산은 변하지 않고 있지만 이용 가능한 정보 집합을 조건으로 하는 조건부 분산이 변하는 경우도 있다. 이 같은 성질을 가진 주가 시계열은 자기회귀 조건부 이분산(ARCH) 계통의 과정으로 모형화하고 있다. 그러나 무조건부 분산이 시간의 흐름에 따라 변하면 ARCH 계통은 중대한 모형정립과오(misspecification)에 직면하게 된다. 따라서 본 논문은 무조건부 분산이 시간의 흐름에 따라 변할 때 자기 회귀 과정의 모수를 추정하는 방법을 검토하고, 이 방법을 한국 종합주가 지수에 적용하여 자기회귀 과정의 모수를 추정하였다. 이 방법에 의하여 추정된 2계 자기회귀 과정의 모수값 중 상수항과 제1계 항의 계수는 통상 최소자승법에 의한 값과 유사하다. 그러나 제2계 항 모수의 값은 양자가 상당히 다르다. 최소자승에 의한 제2계 값이 과대 추정되고 있다.

  • PDF

Nonparametric multiple comparison method using aligned method and joint placement in randomized block design with replications (반복이 있는 랜덤화 블록 모형에서 정렬방법과 결합위치를 이용한 비모수 다중비교법)

  • Hwang, Juwon;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.599-610
    • /
    • 2018
  • The method of Mack and Skillings (Technometrics, 23, 171-177, 1981) is a nonparametric multiple comparison method in a randomized block design with replications. This method is likely to result in loss of information because each block is ranked using the average of observations instead of repeated observations. In this paper, we proposed a new nonparametric multiple comparison method in the randomized block model with replications using an alignment method proposed by Hodges and Lehmann (The Annals of Mathematical Statistics, 33, 482-497, 1962) that extend the joint placement method proposed by Chung and Kim (Communications for Statistical Applications and Methods, 14, 551-560, 2007). In addition, Monte Carlo simulation compared the family wise error rate and power with the parametric method and the nonparametric method.

Nonparametric procedures using aligned method and joint placement in randomized block design (랜덤화 블록 계획법에서 정렬방법과 결합 위치를 이용한 비모수 검정법)

  • Jo, Sungdong;Kim, Dongjae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.95-103
    • /
    • 2013
  • Nonparametric procedure in randomized block design (RBD) was proposed by Friedman (1937) for general alternatives. Also Page (1963) suggested the test for ordered alternatives in RBD. In this paper, we proposed the new nonparametric method in randomized block design using aligned method suggested by Hodges and Lehmann (1962) and the joint placement described in Chung and Kim (2007). Also, Monte Carlo simulation study was adapted to compare the power of the proposed procedure with those of previous procedure.