• Title/Summary/Keyword: 비모수 모형

Search Result 395, Processing Time 0.024 seconds

Methods for Genetic Parameter Estimations of Carcass Weight, Longissimus Muscle Area and Marbling Score in Korean Cattle (한우의 도체중, 배장근단면적 및 근내지방도의 유전모수 추정방법)

  • Lee, D.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.509-516
    • /
    • 2004
  • This study is to investigate the amount of biased estimates for heritability and genetic correlation according to data structure on marbling scores in Korean cattle. Breeding population with 5 generations were simulated by way of selection for carcass weight, Longissimus muscle area and latent values of marbling scores and random mating. Latent variables of marbling scores were categorized into five by the thresholds of 0, I, 2, and 3 SD(DSI) or seven by the thresholds of -2, -1, 0,1I, 2, and 3 SD(DS2). Variance components and genetic pararneters(Heritabilities and Genetic correlations) were estimated by restricted maximum likelihood on multivariate linear mixed animal models and by Gibbs sampling algorithms on multivariate threshold mixed animal models in DS1 and DS2. Simulation was performed for 10 replicates and averages and empirical standard deviation were calculated. Using REML, heritabilitis of marbling score were under-estimated as 0.315 and 0.462 on DS1 and DS2, respectively, with comparison of the pararneter(0.500). Otherwise, using Gibbs sampling in the multivariate threshold animal models, these estimates did not significantly differ to the parameter. Residual correlations of marbling score to other traits were reduced with comparing the parameters when using REML algorithm with assuming linear and normal distribution. This would be due to loss of information and therefore, reduced variation on marbling score. As concluding, genetic variation of marbling would be well defined if liability concepts were adopted on marbling score and implemented threshold mixed model on genetic parameter estimation in Korean cattle.

BDS Statistic: Applications to Hydrologic Data (BDS 통계: 수문자료에의 응용)

  • Kim, Hyeong-Su;Gang, Du-Seon;Kim, Jong-U;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.769-777
    • /
    • 1998
  • In this study, various time series are analyzed to check nonlinearities of the data. The nonlinearity of a system can be investigated by testing the randomness of the time series data. To test the randomness, four nonparametric test statistics and a new test statistic, called the BDS statistic are used and the results and the results are compared. The Brock, Dechert, and Scheinkman (BDS) statistic is originated from the statistical properties of the correlation integral which is used for searching for chaos and has been shown very effective in distinguishing nonlinear structures in dynamic systems from random structures. As a result of application to linear and nonlinear models which are well known, the BDS statistic is found to be more effective than nonparametric test statistics in identifying nonlinear structure in the time series. Hydrologic time series data are fitted to ARMA type models and the statistics are applied to the residuals. The results show that the BDS statistic can distinguish chaotic nonlinearity from randomness and that the BDS statistic can also be used for verifying the validity of the fitted model.

  • PDF

The Comparative Study for NHPP of Truncated Pareto Software Reliability Growth Model (절단고정시간에 근거한 파레토 NHPP 소프트웨어 신뢰성장모형에 관한 비교 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • Due to the large scale application of software systems, software reliability plays an important role in software developments. In this paper, a software reliability growth model (SRGM) is proposed for testing time. The testing time on the right is truncated in this model. The intensity function, mean-value function, reliability of the software, estimation of parameters and the special applications of Pareto NHPP model are discussed. This paper, a numerical example of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection, depended on difference between predictions and actual values, were efficient using the mean square error and $R_{SQ}$.

Analysis on fatigue life distribution of composite materials (복합재료 피로 수명 분포에 관한 고찰)

  • 황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.790-805
    • /
    • 1988
  • Static strength and fatigue life scattering of glass fiber reinforced epoxy composite materials has been studied. Normal, lognormal, two-parameter and three-parameter Weibull distribution functions are used for strength and one-stress fatigue life distribution. The value of mean fatigue life is analysed using mean fatigue life, mean log fatigue life and expected value of 2 and 3-parameter Weibull distribution functions. Modification on non-statistical cumulative damage models is made in order to interpret the result of two-stress level fatigue life scattering. The comparison results show that 3-parameter Weibull distribution has better predictions in static strength and one-stress level fatigue life distributions. However, no advantage of 3-parameter Weibll distribution is found over 2-parameter Weibull distribution in two-stress level fatigue life predictions. It is found that two-stress level fatigue life prediction by the expanded equal rank assumption is close to the experimental data.

The Bayesian Inference for Software Reliability Models Based on NHPP (NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 베이지안 추론에 관한 연구)

  • Lee, Sang-Sik;Kim, Hui-Cheol;Song, Yeong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.389-398
    • /
    • 2002
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process(NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP ; expressions are given for several performance measure. Actual software failure data are compared with several model on the constant reflecting the quality of testing. The performance measures and parametric inferences of the suggested models using Rayleigh distribution and Laplace distribution are discussed. The results of the suggested models are applied to real software failure data and compared with Goel model. Tools of parameter point inference and 95% credible intereval was used method of Gibbs sampling. In this paper, model selection using the sum of the squared errors was employed. The numerical example by NTDS data was illustrated.

Estimation of smooth monotone frontier function under stochastic frontier model (확률프런티어 모형하에서 단조증가하는 매끄러운 프런티어 함수 추정)

  • Yoon, Danbi;Noh, Hohsuk
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.665-679
    • /
    • 2017
  • When measuring productive efficiency, often it is necessary to have knowledge of the production frontier function that shows the maximum possible output of production units as a function of inputs. Canonical parametric forms of the frontier function were initially considered under the framework of stochastic frontier model; however, several additional nonparametric methods have been developed over the last decade. Efforts have been recently made to impose shape constraints such as monotonicity and concavity on the non-parametric estimation of the frontier function; however, most existing methods along that direction suffer from unnecessary non-smooth points of the frontier function. In this paper, we propose methods to estimate the smooth frontier function with monotonicity for stochastic frontier models and investigate the effect of imposing a monotonicity constraint into the estimation of the frontier function and the finite dimensional parameters of the model. Simulation studies suggest that imposing the constraint provide better performance to estimate the frontier function, especially when the sample size is small or moderate. However, no apparent gain was observed concerning the estimation of the parameters of the error distribution regardless of sample size.

Development and Evaluation of Real-time Travel Time Forecasting Model: Nonparametric Regression Analysis for the Seoul Transit System (비모수 회귀분석을 이용한 실시간 통행시간 예측 기법 개발 및 평가 (서울시 버스를 중심으로))

  • Park, Sin-Hyeong;Jeong, Yeon-Jeong;Kim, Chang-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.1 s.87
    • /
    • pp.109-120
    • /
    • 2006
  • Since the 1st of July, 2004, the public transport system of the Seoul metropolitan area has been rearranged. In the new system, bus lines are divided into 4 classes-wide area, arterial road, branch, and rotation lines with renewed fare system based on the total distance travelled. Since central control center known as the Bus Management System (BMS) integrates the entire system operation. it now becomes feasible to collect travel information and provide it to the users scientifically and systematically. The Purpose of this study is to forecast transit travel time using real-time traffic data coming from both buses and subway. This is significant contribution since provision of real-time transit information and easy access to it would most likely boost the use of mass transit system, alleviating roadway congestion in the metropolitan area.

Stochastic Modeling of Annual Maximum and Minimum Streamflow of Youngdam basin (추계학적 모형을 이용한 용담 유역의 연 최대${\cdot}$최소 유출량 모의)

  • Kim, Do Jin;Kim, Byung Sik;Kim, Hung Soo;Seoh, Byung Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.719-723
    • /
    • 2004
  • 본 연구에서는 일 최고, 최소치 유출량 계열을 확충하기 위해 ARIMA(p,d,q) 모형을 이용하였으며, 분석 자료의 경향성 유무를 파악하기 위해 Mann-Kendal 비모수적 검정을 실시하였다. 분석 결과, 최고 최소 유출량 자료 모두 경향성이 없는 것으로 분석되었다. ARIMA(p,d,q) 모형의 최적 차수를 결정하기 위해 ACF, PACF, AIC, 그리고 SBC(Schwarz Bayesian Criterion) 검사를 실시하였으며 이를 통해 최적의 ARMA 모형을 결정하였다. 일 최대치 자료의 경우 추계학적 경향 보다는 무작위적 특성을 보였으며, 일 최소치 자료계열 경우, ARMA(1,0) 모형이 최적 모형으로 선정되었다.

  • PDF

DEA 와 SVM 을 통합한 IT 벤처기업의 효율성 평가

  • Hong, Tae-Ho;Park, Ji-Yeong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.800-806
    • /
    • 2007
  • IT 벤처기업은 자본 대비 높은 수익성을 가지므로 지식기반 산업환경에서 많은 투자자들의 집중적인 관심을 받고 있다. 이러한 IT 벤처기업의 효율성을 평가하기 위한 방안으로, DEA 와 데이터마이닝 기법을 통합하는 방안을 제시하였다. 국내 코스닥 상장 기업 가운데 IT 에 주력하고 있는 벤처기업들을 대상으로 본 연구에서 제시한 효율성 평가방법을 적용 하였다. 대표적인 비모수적 분석기법인 Data Envelopment Analysis(DEA)를 이용하여 연구대상 기업들을 효율기업 및 비효율기업으로 구분한 후, DEA 의 효율성을 설명하는 모형을 logit 을 이용하여 구축하였다. DEA 는 기업의 상대적인 효율성을 측정하는 데에서 우수하지만, 효율성 정도를 설명하는 모형의 구축에는 한계가 있다. 이를 보완한 DEA 의 결과를 logit 과 통합한 효율성 모형에 대해서 데이터 마이닝 기법인 logit, 판별분석, Support Vector Machine(SVM) 등을 적용하여 IT 벤처기업의 효율성을 사전에 예측하여 평가 및 투자에 활용할 수 있는 방안을 제시하였다.

  • PDF

Analysis of market share attraction data using LS-SVM (최소제곱 서포트벡터기계를 이용한 시장점유율 자료 분석)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.879-886
    • /
    • 2009
  • The purpose of this article is to present the application of Least Squares Support Vector Machine in analyzing the existing structure of brand. We estimate the parameters of the Market Share Attraction Model using a non-parametric technique for function estimation called Least Squares Support Vector Machine, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. Estimation by Least Squares Support Vector Machine technique makes it a good candidate for solving the Market Share Attraction Model. To illustrate the performance of the proposed method, we use the car sales data in South Korea's car market.

  • PDF