반복이 있는 랜덤화블록 모형에서의 비모수적 검정 방법에는 Mack과 Skillings (1980)가 제안한 방법이 있다. 이 방법은 각각의 관측값을 사용하는 대신 각 블록에서의 반복된 관측값들의 평균을 사용하여 검정하는 방법이다. 따라서 관측치들의 정보를 손실할 수 있다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위해 정렬방법과 선형 위치통계량을 이용한 비모수 검정법을 제안하였다. 또한 몬테카를로 모의실험(Monte-Carlo Study)을 통하여 기존의 방법과 제안한 방법의 검정력을 비교하였다.
반복이 있는 랜덤화 블록 모형(randomized block design with replications)에서 비모수 다중비교 방법으로는 Mack과 Skillings (Technometrics, 23, 171-177, 1981) 방법이 있다. 이 방법은 각 블록의 처리에서 반복된 관측값 대신 관측값들의 평균을 이용해 순위를 매기기 때문에 정보의 손실이 발생할 가능성이 있다. 이를 보완하기 위해 본 논문에서는 Hodges와 Lehmann (The Annals of Mathematical Statistics, 33, 482-497, 1962)이 제안한 정렬방법과 Chung과 Kim (Communications for Statistical Applications and Methods, 14, 551-560, 2007)이 제안한 결합위치 검정법을 확장하여 반복이 있는 랜덤화 블록 모형에서 새로운 비모수 다중비교 방법을 제시하였다. 또한 몬테카를로 모의실험(Monte Carlo simulation)을 통해 모수적 방법과 기존의 비모수적 방법과의 family wise error rate (FWE)와 검정력을 비교하였다.
섬진강은 한국 주요 5대강 중 하나로 유량 변동계수가 가장 크다. 이로 인해, 극심한 가뭄이나 홍수의 발생 확률이 높을 뿐만 아니라, 가뭄에서 홍수 또는 홍수에서 가뭄으로 갑작스러운 극한 수문 기상 변화가 일어날 수 있다. 수자원의 안정적인 확보와 수재해로 인한 피해를 최소화하기 위한 수자원 관리와 장기적 수문분석이 필요하다. 이에 본 연구에서는 섬진강 유역의 수문 관측소(56개)에서 10년 이상 장기 관측된 일유량 자료(1997년~2020년)를 이용하여 비모수 검정 방법을 통한 추세 분석과 변동점을 탐색하였다. 우선, 일유량 관측 자료를 이용하여 누락된 일유량 관측값으로 생겨날 수 있는 불확실성을 배제하기 위해 관측 기간 중 누락된 일유량 관측값들의 월별 비율을 조사하였다. 그리고 월별 일유량 관측값 누락이 없는 관측소들의 월평균 하천 유량 값으로 연평균 하천 유량 값을 계산하였다. 관측 기간 동안 결측된 값이 없는 28개의 관측소를 대상으로 비모수 검정 방법을 통한 연별 추세 분석(Mann-Kendall Test)과 변동점 탐색(Pettitt Test)을 하였다. 연별 추세 분석 경우 28개의 관측소 중 8개의 관측소에서 통계적으로 의미 있는 추세(신뢰도> 99%)가 탐지되었다. 이들 중 3개의 관측소에서는 증가하는 추세를 보였고 5개의 관측소에서 감소하는 추세가 보였다. 7개의 관측소에서는 통계적으로 의미가 있는 변동점도 탐색되었고 그 변동점이 탐색된 연도는 2011년(4개), 2012년(3개)로 나타났다. 계절적 추세 분석에서는 28개의 관측소 중 각각 봄(MAM) 11개, 여름(JJA) 11개, 가을(SON) 9개, 겨울(DJF) 11개 관측소에서 통계적 추세(신뢰도> 99%)가 탐지되었다. 또한 봄 17개, 여름 7개, 가을 18개, 겨울 18개 관측소에서 변동점이 탐색되었고, 그 연도는 관측소마다 달랐다. 이러한 유량의 추세와 변동점의 원인(기후적/인위적 요소)을 더욱 잘 이해하기 위해, 계절별 유량과 강수량의 상관관계 분석이 연구될 필요가 있다. 이러한 장기 수문기후학적 추세와 변동성에 대한 이해는 농업이 중요한 섬진강 유역의 수자원 관리와 기후변화에 선제대응 할 수 있는 기초를 마련할 것이다.
독립된 세 개 이상의 처리 간에 차이 유무를 검정하는 비모수적 방법에는 Kruskal과 Wallis (1952)가 제안한 검정법이 있다. 세 개 이상의 다른 모집단으로부터 결합된 표본관측 값들의 순위를 이용한 검정기법이다. 본 논문에서는 Chung과 Kim (2007)이 제안한 결합위치 방법을 확장하여 일원배치모형에서 새로운 방법을 제안하였다. 또한 모의실험(Monte Calro simulation study)를 통하여 기존의 검정법과 제안한 방법의 검정력을 비교하였다.
이 논문에서는 신호의존성 잡음과 가산성 잡음이 함께 있을 때 확률 신호를 찾아내는 두 표본을 쓰는 국소 최적 순위 검파기의 점근 성능을 다룬다. 비모수 검파기인 국소 최적 순위 검파기는 국소 최적 검파기와 비교하여 볼 때, 시간상으로 상관이 있는 확률 신호에 대해서 거의 같은 점근 성능을 가진다. 두 표본을 쓰는 국소 최적 순위 검파기는 한 표본을 쓰는 국소 최적 순위 검파기와 같게 수행한다는 점은 주목할 만하다.
본 논문에서는 밀도 추정에 관한 통계량으로서 불편성과 일치성에 관하여 제시하고 밀도함수에 관한 평활 방법으로서 히스토그램과 커널 밀도 추정 및 극소적응평활(local adaptive smoothing)에 관하여 보이고자 한다. 그리고 과거에서 현재까지 비모수 밀도 추정에 관한 연구에 관하여 조사하고 논하고자 한다.
수리 또는 계량적 모형을 사용하는 사회과학연구에서 분석의 초점은 종속변수와 설명변수의 관계를 밝히는 것, 즉 설명 중심의 모형(explanatory modeling)이 지금까지 주류를 이루었다. 반면 예측(prediction) 능력 제고에 초점을 맞춘 분석은 드물었다. 본 연구에서는 이론 및 가설을 검증하거나 변수 간의 관계를 밝히는 설명 중심의 모형이 아니라 신규 관찰치에 대한 예측 오차를 줄이는, 예측 중심의 비모수 모형(non-parametric model)을 검토하였다. 서울시 강남구를 사례지역으로 선정한 후, 2011년부터 2014년까지 신고된 단독주택 실거래가를 기초자료로 하여 주택가격을 추정하였다. 적용한 비모수 모형은 기계학습 분야에서 제시된 일반가산모형(generalized additive model), 랜덤 포리스트, MARS(multivariate adaptive regression splines), SVM(support vector machines) 등이며 비교적 최근에 개발된 MARS나 SVM의 예측력이 뛰어남을 확인할 수 있었다. 마지막으로 이러한 비모수 모형에 공간적 자기상관성을 추가적으로 반영한 결과, 모형의 가격 예측력이 보다 개선되었음을 알 수 있었다. 본 연구를 계기로 그간 모수 모형에 집중되었던 부동산 가격추정 방법론이 비모수 모형으로 확대 및 다양화되기를 기대한다.
공변량(covariate)이 존재하는 경우, 각 처리군 간 효과의 차이를 검정하기 위한 대표적인 비모수적 방법에는 Quade (1967)가 제안한 검정법이 있다. 또한 반응변수에 대해 공변량으로 단순선형회귀분석을 실시하여 얻은 잔차에 대해 일원배치분산분석과 Kruskal Wallis가 제안한 방법을 적용하는 방법, 그리고 Hwang과 Kim (2012)이 제안한 비모수적 도구인 위치(placement)를 이용한 방법이 있다. 본 논문에서는 공분산분석 모형에서 Hwang과 Kim (2012)이 제안한 방법을 확장하여 공분산분석에서의 새로운 방법을 제안하였다. 또한 모의실험(Monte Carlo simulation study)을 통하여 기존의 검정법들과 제안한 방법의 검정력을 비교하였다.
Communications for Statistical Applications and Methods
/
제4권2호
/
pp.327-332
/
1997
다층 신경망은 비모수 회귀함수 추정의 한 방법이다. 다충 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있다. 그러나 이 알고리즘은 이상치에 매우 민감하여 이상치를 포함하고 있는 자료에 대하여 원하지 않는 회귀함수를 추정한다. 본 논문에서는 통계물리에서 자주 사용하는 방법을 이용하여 로버스트 역전파 알고리즘을 제안하고 수학적으로 신경망과 매우 유사한 PRP(projection pursuit regression) 방법, 일반적인 역전파 알고리즘과 모의실험을 통해 비교 분석한다.
랜덤화 블록 계획법을 검정하는 비모수적 방법에는 일반적인 대립가설에서 Friedman (1937)이 제안한 검정법이 있다. 이 방법은 처리 효과의 차이를 알아보기 위한 검정법으로 블록 내 순위를 사용해 검정함으로써 블록 간 정보의 손실이 있을 수 있다. 본 논문에서는 Hodges와 Lehmann (1962)이 제안한 정렬방법을 이용하여 블록 간 정보 손실을 줄이고, Jo와 Kim (2013)이 제안한 랜덤화 블록 계획법의 결합위치 방법을 확장하여 결합위치에 점수함수를 적용한 새로운 비모수적 방법을 제시하였다. 또한 Monte carlo simulation을 통하여 기존의 검정 방법과 제안한 검정법의 검정력을 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.