• Title/Summary/Keyword: 비례 적분 미분제어기

Search Result 57, Processing Time 0.03 seconds

Mathematical Modeling for Dynamic Performance Analysis and Controller Design of Manta-type UUV (만타형상 무인잠수정의 운동성능 해석 및 제어기 설계를 위한 비선형 수학모델 개발)

  • Byun, Seung-Woo;Kim, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • This paper describes the mathematical model and controller design for Manta-type Unmanned Underwater Test Vehicle (MUUTV) with 6 DOF nonlinear dynamic equations. The mathematical model contains hydrodynamic forces and moments expressed in terms of a set of hydrodynamic coefficients which were obtained through the PMM (Planar Motion Mechanism) test. Based on the 6 DOF dynamic equations, numerical simulations have been performed to analyze the dynamic performances of the MUUTV. In addition, using the mathematical model PID and sliding mode controller are constructed for the diving and steering maneuver. Simulation results show that the control performances of the MUUTV and compared with these of NPS (Naval Postgraduate School) AUV II.

Control techniques for improving response of the AVR (AVR의 응답속도개선을 위한 제어기법에 관한 연구)

  • Lee, Hyung-ki;Kim, Song-Hyun;Kim, Hyun-soo;Kim, Gi-ryang;Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2534-2539
    • /
    • 2015
  • Method for regulating voltage using a generator voltage regulating device (AVR) is divided in an existing analog system and a digital replacement. Typically, to adjust the voltage by using a brushless excitation system of the type to be reduced for a voltage change under all. The control method of the AVR as a PID (proportional-integral-differential) control method is widely used. However, the control scheme is to reduce the transient response of the control parameters of the controller to the control object. Therefore, if the control target should change, there is a problem, reset the parameters of the controller again. In this study, without having to reset the parameters of the controller for the parameter variations to be controlled iPID (intelligent PID) using a controller designed to obtain a generator AVR system voltage variation is small in response to full load is applied to and through simulations and experiments improved transient response.

An Adaptive Speed Control of a Diesel Engine by Means of the On-line Parameter Estimate (디젤기관의 on-line 파라미터 추정에 의한 적응 속도제어)

  • 유희한;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.20-26
    • /
    • 1996
  • Recently, for the speed control of a diesel engine, some methods using the modern control theory such as LQ control technique, or $\textit{H}_{\infty}$control theory etc., have been reported. However, most of speed controlers of a diesel engine ever developed are still using the PID control algorithm. And, as another approach to the speed control of a diesel engine, the authors proposed already a new method to adjust the parameters of the PID controller by a model matching method. In the previous paper, the authors confirmed that the proposed new method is superior to Ziegler & Nichols's method through the analysis of results of the digital simulations under the assumption that the parameters of a diesel engine are known exactly. But, actually, it is very difficult to find out the value of parameters of a diesel engine accurately. And the parameters of a diesel engine are changigng according to the operating condition of a diesel engine. So, in this paper, a method to estimate the parameters of the PID controller for the speed control of a diesel engine by means of the model matching method are proposed. Also, the digital simulations are carried out in cases either with or without measurement noise. And this paper confirms that the proposed method here is superior to Ziegler & Nichols's method through the analysis of the characteristics of indicial responses.

  • PDF

퍼지 간접추론법에 의한 비례-적분-미분 제어기의 점진적 자기동조

  • 김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.182-186
    • /
    • 1992
  • A self tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The fuzzy technique is considered to obtain ease and simplicity of tuning process. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the followed tuning process can be made effectively. The design parameters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proped tuning method can produce an effective tuning for arbitaray design performances.

Iterative Tuning of PID Controller by Fuzzy Indirect Reasoning and a Modified Zigler-Nichols Method (퍼지 간접추론법과 수정형 지글러-니콜스법에 의한 비례-적분-미분 제어기의 점진적 동조)

  • Kim, S.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.74-83
    • /
    • 1996
  • An iterative tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the following tuning process can be made effectively. The design paramaters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proposed tuning method can produce an effective tuning for arbitrary design performances.

  • PDF

Drone Hovering using PID Control (PID 제어를 이용한 드론의 호버링)

  • Oh, Ji-Wan;Seol, Jae-Won;Gong, Youn-Hee;Han, Seung-Jae;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1269-1274
    • /
    • 2018
  • In this paper, it covers technical aspect of drone by introducing the drone hovering. Arduino Uno and 3-axis attitude and azimuth sensor are the two main components of the drone. Arduino Uno is used as a main controller and 3-axis attitude and azimuth sensor are used to collect axial (X,Y,Z) data, which is massaged to determine the pitch (fore and aft tilt) and the bank (side to side tilt). Furthermore, drone stabilizes horizontal attitude by correcting these tilted angle through PID control.

Analytical Design of PID Controller for Improved Disturbance Rejection of Delay-Free Processes (시간지연이 없는 공정에서의 외란제거 성능 향상을 위한 PID 제어기의 해석적 설계)

  • Jujuly, M. Masum;Vu, Truong Nguyen Luan;Lee, Moonyong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.565-570
    • /
    • 2011
  • In this paper, the analytical tuning rules of the proportional-integral-derivative (PID) controller have been derived for a broad class of stable, integrating, and unstable processes without time delay. On the basis of the renowned internal model control (IMC) design principles and the two-degree-of-freedom (2DOF) control structure, the proposed method can be effectively used for obtaining the enhanced performances of both the disturbance rejection as well as the set-point tracking problems, since the design scheme is simple, straightforward, and can be easily implemented in the process industry. Several processes without time delay are employed to demonstrate the improved closed-loop performance of the proposed controller design in compared with the other well-known design methods in terms of the same degree of robustness.

Control Law Design for a Tilt-Duct Unmanned Aerial Vehicle using Sigma-Pi Neural Networks (Sigma-Pi 신경망을 이용한 틸트덕트 무인기의 제어기 설계연구)

  • Kang, Youngshin;Park, Bumjin;Cho, Am;Yoo, Changsun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • A Linear parameterized Sigma-Pi neural network (SPNN) is applied to a tilt-duct unmanned aerial vehicle (UAV) which has a very large longitudinal stability ($C_{L{\alpha}}$). It is uncontrollable by a proportional, integral, derivative (PID) controller due to heavy stability. It is shown that the combined inner loop and outer loop of SPNN controllers could overcome the sluggish longitudinal dynamics using a method of dynamic inversion and pseudo-control to compensate for reference model error. The simulation results of the way point guidance are presented to evaluate the performance of SPNN in comparison to a PID controller.

Electromagnetic Strip Stabilization Control in a Continuous Galvanizing Line using Mixture of Gaussian Model Tuned Fractional PID Controller (비정수 차수를 갖는 비례적분미분제어법과 가우시안 혼합모델을 이용한 연속아연도금라인에서의 전자기 제진제어 기술)

  • Koo, Bae-Young;Won, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.718-722
    • /
    • 2015
  • This paper proposes a fractional-order PID (Proportional-Integral-Derivative) control used electromagnetic strip stabilization controller in a continuous galvanizing line. Compared to a conventional PID controller, a fractional-order PID controller has integration-fractional-order and derivation-fractional-order as additional control parameters. Thanks to increased control parameters, more precise controller adjustment is available. In addition, accurate transfer function of a real system generally has a fractional-order form. Therefore, it is more adequate to use a fractional-order PID controller than a conventional PID controller for a real world system. Finite element models of a $1200{\times}2000{\times}0.8mm$ strip, which were extracted using a commercial software ANSYS were used as simulation plants, and Gaussian mixture models were used to find optimized control parameters that can reduce the strip vibrations to the lowest amplitude. Simulation results show that a fractional-order PID controller significantly reduces strip vibration and transient response time than a conventional PID controller.

A Study on the Response Characteristics of 200MW Gas Turbine Governor System (200MW급 가스터빈 조속기 응답특성에 대한 연구)

  • Han, Young-Bok;Nam, Kang-Hyun;Kim, Sung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.625-632
    • /
    • 2022
  • Gas turbine generators in load-following operation in the domestic power system play a major role in maintaining the rated frequency, but often have poor frequency control. Therefore, after examining the control characteristics of the governor, which is a gas turbine speed control device, and analyzing the failure types, countermeasures were suggested for each case. In addition, it was confirmed through the governor response test that the gas turbine helps in frequency recovery depending on the speed of fuel control, but also acts as a factor impeding stable operation, such as rapid fluctuations in combustion chamber temperature and combustion vibration. Therefore, in order to maintain stable power quality, there was a need for thorough facility management as well as research on the governor control method in which the traditional PID control method and the machine learning algorithm, a core field of the 4th industry, were fused.