Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.203-205
/
2014
UHD 영상 콘텐츠는 FHD 영상에 비해 생생하고 더 좋은 고화질의 영상을 제공하지만 영상정보의 데이터 양은 4K UHD 경우 4 배 이상이다. 이러한 초대용량의 UHD 영상을 기존의 병렬/분산 처리를 이용하여 비디오 코딩 한다면 UHD 의 초대용량 특성으로 인하여 연산량 부하가 발생하게 된다. 따라서 UHD 영상은 기존의 분산처리 방식이 아닌 초대용량 데이터를 빠르게 처리 할 수 있는 새로운 분산 처리기술이 필요하다. 본 논문은 UHD 콘텐츠를 빠르게 트랜스코딩 할 수 있는 클라우드 기반 UHD 영상 트랜스코딩 시스템을 제안한다. 본 논문에서 제안하는 UHD 영상 트랜스코딩 시스템은 다음 3 가지 패킷 분석기, 분산 트랜스코더, 스트림 합성기로 구성된다. 패킷 분석기는 입력 영상을 분석하여 오디오와 비디오 스트림을 분할하고 비디오 스트림은 분산처리를 할 수 있도록 영상 패킷을 분할한다. 분산 트랜스코더는 클라우드 환경을 이용하여 분할된 영상 패킷들을 분산 디코드 및 인코드 처리한다. 스트림 합성기는 트랜스코딩이 완료된 비디오 스트림과 패킷 분석기에서 획득하였던 오디오 스트림을 합성하는 기능을 한다. 제시하는 방안을 적용하여 클라우드 기반 영상 트랜스 코딩 시스템을 구현하였으며, 구현된 시스템은 대용량의 UHD 영상을 빠른 속도로 트랜스코딩이 가능하다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2007.02a
/
pp.3-8
/
2007
최근, 실감 영상에 대한 관심과 요구가 증가하면서 신개념 서비스인 3차원 다시점(Multi-view) 방송에 대한 연구가 다양하게 진행되고 있다. 이와 더불어 광고와 게시를 목적으로 입체 영상과 입체 디스플레이 장치의 수요가 증가하고 있어, 앞으로 다시점 영상 콘텐츠와 디스플레이 장치가 활발하게 보급될 전망이다. 다시점 영상 콘텐츠는 제작 단계에서 컴퓨터 그래픽스 객체를 합성하면 보다 목적에 부합하는 콘텐츠를 제작할 수 있다. 본 논문에서는 다시점 카메라로부터 얻은 RGB 텍스쳐 데이터와 깊이 테이터에 컴퓨터 그래픽스 객체를 합성하여 다시점 합성 영상을 생성하는 방법을 제안한다. 또한, 제작된 다시점 합성 영상을 검증하고 재생하는 다시점 비디오 뷰어를 설계, 구현 한다. 가상의 다시점 영상에 그래픽스 객체를 합성하는 방법은 후 합성 기반으로, 임의의 그래픽스 객체 모델을 생성하여 깊이 정보를 부여하고, 가상 시점 영상의 생성과 동일한 방법으로 그래픽스 객체의 각 시점별 영상을 생성한다. 끝으로 깊이정보를 사용하여 가상 시점 영상의 적절한 좌표공간으로 그래픽스 객체를 삽입한다. 그래픽스 합성의 정확성 검증을 위해 다시점 그래픽스 합성 영상을 디스플레이하는 뷰어는 2D 및 입체를 모두 지원하고, view switching, frozen moment, view sweeping 등의 interactive special effect기법과 다양한 포맷의 저장이 가능하다. 또한, 입체 영상의 실험에서는 그래픽 객체의 입체감 조절을 위해 실제 카메라 시점 간에 필요한 중간시점영상의 개수를 결정할 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.75-77
/
2021
MPEG 비디오 그룹은 제한된 3D 공간 내에서 움직임 시차(motion parallax)를 제공하면서 원하는 시점(view)을 렌더링(rendering)하기 위한 표준으로 TMIV(Test Model for Immersive Video)라는 테스트 모델과 함께 효율적인 몰입형 비디오의 부호화를 위한 MIV(MPEG Immersive Video) 표준을 개발하고 있다. 몰입감 있는 시각적 경험을 제공하기 위해서는 많은 수의 시점 비디오가 필요하기 때문에 방대한 양의 비디오를 고효율로 압축하는 것이 불가피하다. TMIV 는 여러 개의 입력 시점 비디오를 소수의 아틀라스(atlas) 비디오로 변환하여 부호화되는 화소수를 줄이게 된다. 아틀라스는 선택된 소수의 기본 시점(basic view) 비디오와 기본 시점으로부터 합성할 수 없는 나머지 추가 시점(additional view) 비디오의 영역들을 패치(patch)로 만들어 패킹(packing)한 비디오이다. 본 논문에서는 아틀라스 비디오의 보다 효율적인 부호화를 위해서 패치 내에 생기는 작은 홀(hole)들을 채우는 기법을 제안한다. 제안기법은 기존 TMIV8.0 에 비해 1.2%의 BD-rate 이 향상된 성능을 보인다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.4
/
pp.22-31
/
2008
In this paper, we propose a new approach for efficient multiview stereo matching and virtual view generation, which are key technologies for 3DTV. We propose semi N-view & N-depth framework to estimate disparity maps efficiently and correctly. This framework reduces the redundancy on disparity estimation by using the information of neighboring views. The proposed method provides a user 2D/3D freeview video, and the user can select 2D/3D modes of freeview video. Experimental results show that the proposed method yields the accurate disparity maps and the synthesized novel view is satisfactory enough to provide user seamless freeview videos.
비디오 하이라이트(highlights)는 원래의 비디오 보다 짧고 많은 양의 의미를 갖는다. 기존의 파노라마 형태의 추상화 기법은 여러 프레임을 하나의 프레임으로 모자이크하는 형태이었고, TV 드라마 하이라이트 방법은 카메라의 이동이나 특수효과에 의존하기 때문에 스포츠 비디오에 적용은 부적합하다. 이 논문에서는 축구 비디오를 대상으로 시각정보와 자막을 이용하는 새로운 비디오 하이라이트 생성 방법과 이벤트 기반 비디오 인덱싱 방법을 제안한다. 하이라이트 생성은 하이라이트 생성 규칙에 따라 자막에 의해 추출된 TIT을 중심으로 시각정보에 의해 추출된 샷을 합성하여 생성하였고, 인덱싱은 자막으로 추출된 샷은 주요소로, 시각정보에 의해 추출된 샷은 부가적 요소로 구성하였다. 실험에서는 샷 추출기법 중 대표적인 컬러히스토그램과 $\chi$$^2$히스토그램과의 성능을 비교하여 제안한 하이라이트 기법이 다른 방식보다 우수함을 증명하였다.
Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.286-289
/
2001
뉴스 비디오에서 앵커가 등장하는 첫 번째 프레임은 하나의 뉴스를 샷으로 설정하는데 기준이 되는 키 프레임이라고 볼 수 있다. 본 논문에서는 뉴스 비디오의 장면 전환을 검출을 위하여 컬러 히스토그램과 $\chi$$^2$ 히스토그램을 합성한 방법을 이용하여 키 프레임을 추출하며, 추출된 키 프레임을 대상으로 앵커 프레임의 공간적 구성과 얼굴의 특징 정보에 대한 사전 지식을 바탕으로 한 유사성 측정을 통하여 앵커를 인식하도록 한다. 앵커로 인식된 프레임은 하나의 뉴스 신에 대한 키 프레임이 되며 뉴스 비디오를 색인화 하는데 중요한 역할을 수행한다.
본 논문에서는 비분할 비디오로부터 이 비디오에 담긴 사람의 행동을 효과적으로 탐지해내기 위한 심층 신경망 모델을 제안한다. 일반적으로 비디오에서 사람의 행동을 탐지해내는 작업은 크게 비디오에서 행동 탐지에 효과적인 특징들을 추출해내는 과정과 이 특징들을 토대로 비디오에 담긴 행동을 탐지해내는 과정을 포함한다. 본 논문에서는 특징 추출 과정과 행동 탐지 과정에 이용할 심층 신경망 모델을 제시한다. 특히 비디오로부터 각 행동별 시간적, 공간적 패턴을 잘 표현할 수 있는 특징들을 추출해내기 위해서는 C3D 및 I-ResNet 합성곱 신경망 모델을 이용하고, 시계열 특징 벡터들로부터 행동을 자동 판별해내기 위해서는 양방향 BI-LSTM 순환 신경망 모델을 이용한다. 대용량의 공개 벤치 마크 데이터 집합인 ActivityNet 비디오 데이터를 이용한 실험을 통해, 본 논문에서 제안하는 심층 신경망 모델의 성능과 효과를 확인할 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.43-45
/
2015
본 논문은 최근 관심이 높아지고 있는 UHD 콘텐츠 제작과 관련하여 8K UHD 비디오 렌더링 시스템을 제안한다. 현재 시장은 4K UHD 비디오를 중심으로 편집되고 있는 실정을 감안하여, 기존의 상용 UHD 편집 S/W 기반에서 4K UHD 단위의 편집은 유지한 상태로 8K UHD 를 편집하는 환경을 제안하고, 이를 비디오 렌더링 시스템으로 설계하고 구현하였다. 본 비디오 렌더링 시스템은 상용 편집 S/W 기반에서 동작 가능하고, 특히 압축된 비디오 스트림의 디코딩과 비디오 렌더링(합성)을 GPU 기반으로 구현하여 시스템 성능을 효율적으로 사용하였다. 향후 8K UHD 가 시장에 보급되고 시스템 자원이 함께 발전하기 전까지 4K UHD 와 8K UHD 를 잇는 중간 관점에서 활용될 수 있으며, 아울러 4 채널의 4K UHD 비디오를 동시에 편집/모니터링 하는 용도로도 활용이 가능하다.
일반적으로 비디오로부터 캡션을 생성하는 작업은 입력 비디오로부터 특징을 추출해내는 과정과 추출한 특징을 이용하여 캡션을 생성해내는 과정을 포함한다. 본 논문에서는 효과적인 비디오 캡션 생성을 위한 심층 신경망 모델과 그 학습 방법을 소개한다. 본 논문에서는 입력 비디오를 표현하는 시각 특징 외에, 비디오를 효과적으로 표현하는 동적 의미 특징과 정적 의미 특징을 입력 특징으로 이용한다. 본 논문에서 입력 비디오의 시각 특징들은 C3D, ResNet과 같은 합성곱 신경망을 이용하여 추출하지만, 의미 특징은 본 논문에서 제안하는 의미 특징 추출 네트워크를 활용하여 추출한다. 그리고 이러한 특징들을 기반으로 비디오 캡션을 효과적으로 생성하기 위하여 선택적 주의집중 캡션 생성 네트워크를 제안한다. Youtube 동영상으로부터 수집된 MSVD 데이터 집합을 이용한 다양한 실험을 통해, 본 논문에서 제안한 모델의 성능과 효과를 확인할 수 있었다.
이미지 모자이크 기법은 한 번에 촬영 할 수 없는 큰 배경이나 사물을 부분적으로 촬영 한 후 이들을 조합하여 전체 배경이나 사물을 합성하는 기술이다. 이 기술은 주로 지형을 촬영한 항공사진을 조합하여 전체 영상을 얻는 용도로 사용되어왔다. 본 연구에서는 일반적인 스틸사진의 조합이 아닌 동영상으로 촬영된 영상물로부터 전체 배경을 합성하는 방법에 대한 것이다. 이를 위하여 먼저 비디오 프레임간의 공통적인 특징 점들을 추출하고 일치되는 점들을 찾아내었다. 이로부터 두 프레임간의 상대적인 좌표를 구한 후 이를 저장하였다. 마지막으로 합성 단계에서는 저장된 상대 좌표로부터 부분 이미지를 연결하여 전체 이미지를 구하는 방법을 제안하였다. 제안된 방법은 근접 촬영이 필수인 협소공간의 고대 구조물의 육안 검사를 소형로봇 등의 원격 이동체에 실린 카메라로 수행하기 위한 용도에 응용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.