본 논문에서는 비디오 콘텐츠 제작에서 비디오 영상의 합성 효과에 대해서 제안한다. 비디오는 동화상으로 정지 영상에 움직임을 주어 동화상으로 나타낸다. 즉 프레임의 움직임으로 영화는 24 프레임을 TV는 30프레임으로 영상을 전송한다. 영상은 비디오카메라나 여러 광학 렌즈를 통하여 촬영하여 영상을 얻게 되는데 자연 현상을 촬영하여 영상을 얻거나 목적과 필요에 따라 다양한 편집 방법과 효과로 영상을 얻게 된다. 촬영한 영상은 자연 그대로의 메시지를 가지고 있지만 영상의 효과를 주기 위해서 다양한 비디오 효과나 합성을 통하여 새로운 영상을 얻게 된다. 따라서 이러한 영상은 시각 효과가 크고, 메시지 전달의 효과를 갖는다. 본 연구에서는 비디오 영상을 보다 효과적으로 나타내기 위해서 합성을 적용하며, 정지 영상 기법과 동영상 기법의 적용하여 효과에 대한 비교를 나타낸다.
본 논문에서는 웨이블릿 변환 기법으로 키프레임을 분석하여 객체 영역을 추출함과 동시에 가상의 객체 영상을 현실감있게 합성하는 기술에 대하여 연구하였다. 가상의 객체 영상이나 실물체 영상을 비디오 영상내에 삽입하여 좀 더 현실감있는 새로운 동영상 비디오 데이터를 제작하는 데 초점을 맞추어 연구를 진행하였다. 웨이블릿 변환이 새로운 영상을 재구성하는데 커다란 기여를 하였으며 본 논문에서 제시한 AR 영상 합성 기법은 동영상 데이터를 합성하는데 사용자가 원하는 지점에 정확하게 영상의 특성정보를 충분히 잘 살린 새로운 방법의 시도였다. 또한, 영상의 캘리브 레이션 방법을 거치지 않고 비디오 영상의 회전행렬과 위치성분을 계산하여 매핑된 가상의 객체 영상을 영상 보간법을 적용하여 직접 가사의 객체 영상을 비디오 객체 영상을 비디오 영상열에 삽입한다. 제시한 영상 합성 기법은 가상의 객체 영상이 디지털 동영상내에 삽입되었을 때 가장 큰 문제점인 떨림 현상과 부조화 현상이 제거되었다.
본 연구에서는 기존의 동영상 합성 네트워크에 스타일 합성 네트워크를 접목시켜 동영상에 대한 스타일 합성의 한계점을 극복하고자 한다. 본 논문의 네트워크에서는 동영상 합성을 위해 스타일갠 학습을 통한 스타일 합성과 동영상 합성 네트워크를 통해 스타일 합성된 비디오를 생성하기 위해 네트워크를 학습시킨다. 인물의 시선이나 표정 등이 안정적으로 전이되기 어려운 점을 개선하기 위해 3차원 얼굴 복원기술을 적용하여 3차원 얼굴 정보를 이용하여 머리의 포즈와 시선, 표정 등의 중요한 특징을 제어한다. 더불어, 헤드투헤드++ 네트워크의 역동성, 입 모양, 이미지, 시선 처리에 대한 판별기를 각각 학습시켜 개연성과 일관성이 더욱 유지되는 안정적인 스타일 합성 비디오를 생성할 수 있다. 페이스 포렌식 데이터셋과 메트로폴리탄 얼굴 데이터셋을 이용하여 대상 얼굴의 일관된 움직임을 유지하면서 대상 비디오로 변환하여, 자기 얼굴에 대한 3차원 얼굴 정보를 이용한 비디오 합성을 통해 자연스러운 데이터를 생성하여 성능을 증가시킴을 확인했다.
본 논문에서는 모바일 에드혹 네트워크에서 멀티미디어 트래픽의 전송특성을 시뮬레이션으로 연구하였다. 시뮬레이션에서는 멀티미디어 트래픽으로 MPEG 비디오 형식의 합성 스트리밍 비디오를 사용하였으며, 합성 스트리밍 비디오는 비디오 스티림 알고리즘을 사용하여 생성하였다. 비디오 합성 알고리즘은 I(intra-coded), P(predicted-coded), B(bidirectional-coded) 프레임 열로 구성되는 특정 GOP(group of pictures) 패턴을 사용하여 MPEG 비디오 스트림에 대응하는 VBR 트래픽을 생성한다. 이 합성 VBR 스트림을 모바일 애드혹 네트워크 상에서 UDP 프로토콜을 사용하여 전송하였으며, 라우팅 프로토콜로는 AODV와 DSR을 사용하였다. 모바일 에드혹 네트워크의 비디오 스트림 전송성능으로서 패킷지연, 패킷전달율 및 수율을 분석하였으며, 데이터 트래픽과 비디오 트래픽의 전송수율을 비교하여 보았다.
본 논문에서는 기존의 연구를 극복하여 단일 영상이 아닌 단안 비디오로부터 5D 라이트필드 영상을 합성하는 딥러닝 프레임워크를 제안한다. 현재 일반적으로 사용 가능한 Lytro Illum 카메라 등은 초당 3프레임의 비디오만을 취득할 수 있기 때문에 학습용 데이터로 사용하기에 어려움이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 가상 환경 데이터를 구성하며 이를 위해 UnrealCV를 활용하여 사실적 그래픽 렌더링에 의한 데이터를 취득하고 이를 학습에 사용한다. 제안하는 딥러닝 프레임워크는 두 개의 입력 단안 비디오에서 $5{\times}5$의 각 SAI(sub-aperture image)를 갖는 라이트필드 비디오를 합성한다. 제안하는 네트워크는 luminance 영상으로 변환된 입력 영상으로부터 appearance flow를 추측하는 플로우 추측 네트워크(flow estimation network), appearance flow로부터 얻어진 두 개의 라이트필드 비디오 프레임 간의 optical flow를 추측하는 광학 플로우 추측 네트워크(optical flow estimation network)로 구성되어있다.
본 논문에서는 비디오에서 비보정 3차원 좌표의 복원과 카메라의 움직임 추정을 통하여 가상 객체를 비디오에 자연스럽게 합성하는 방법을 제안한다. 비디오의 장면에 부합되도록 가상 객체를 삽입하기 위해서는 장면의 상대적인 구조를 얻어야 하고 비디오 프레임의 흐름에 따른 카메라 움직임의 변화도 추정해야 한다. 먼저 특장점을 추적하고 비보정 절차를 수행하여 카메라 파라메터와 3차원 구조를 복원한다. 각 프레임에서 카메라 파라메터들을 고정시켜 촬영하고 이들 카메라 파라메터는 일정 프레임 동안 불변으로 가정하였다. 제안된 방법으로 세 프레임 이상에서 작은 수의 특징점 만으로도 올바른 3차원 구조를 얻을 수 있었다. 가상객체의 삽입 위치는 초기 프레임에서 특정 면의 모서리점의 대응점을 지정하여 결정한다. 가상 객체의 투사 영역을 계산하고 이 영역에 이음새가 없도록 텍스처를 혼합하여 가상객체와 비디오의 부자연스러운 합성 문제를 해결하였다. 제안 방법은 비보정 절차를 선형으로만 구현하여 기존의 방법에 비해서 안정성과 수행속도의 면에서 우수하다. 실제 비디오 스트림에 대한 다양한 실험을 수행한 결과 여러 증강현실 응용 시스템에 유용하게 사용될 수 있음을 입증하였다.
최근 딥러닝은 다양한 컴퓨터 비전에 적용되어 높은 성능을 제공하고 있고 이에 따라 중간 프레임을 생성하는 비디오 프레임 보간 기법에도 딥러닝이 적용되고 있다. 많은 딥러닝 기반의 비디오 프레임 보간 기법은 크게 옵티컬 플로우를 추정하는 플로우 추정 네트워크와 합성 네트워크로 구성되며 본 논문에서는 합성 네트워크 부분의 성능향상을 위한 네트워크에 대하여 다룬다. 합성 네트워크에 주로 사용되는 UNet 구조와 GridNet 구조의 장단점과 네트워크에 따른 보간 결과의 차이에 대해서 알아보고 영상 복원에서 제안된 NAFNet 을 비디오 보간 기법에 맞게 변형시켜 합성 네트워크에 적용한 보간 결과의 차이를 보였다. 실험결과는 기존 네트워크 대비 Vimeo90K 데이터셋에 대하여 PSNR 값이 0.63dB 개선됨을 보여준다.
현재 사용 가능한 상용 라이트필드 카메라는 정지 영상만을 취득하거나 가격이 매우 높은 단점으로 인하여 5차원 라이트필드 비디오 취득에 어려움이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 단안 비디오로부터 라이트필드 비디오를 합성하기 위한 딥러닝 기반 기법을 제안한다. 라이트필드 비디오 학습 데이터를 취득하기 어려운 문제를 해결하기 위하여 UnrealCV를 활용하여 3차원 그래픽 장면의 사실적 렌더링에 의한 합성 라이트필드 데이터를 취득하고 이를 학습에 사용한다. 제안하는 딥러닝 프레임워크는 입력 단안 비디오에서 $9{\times}9$의 각 SAI(sub-aperture image)를 갖는 라이트필드 비디오를 합성한다. 제안하는 네트워크는 밝기 영상으로 변환된 입력 영상으로부터 appearance flow를 추정하는 네트워크, appearance flow로부터 얻어진 인접한 라이트필드 비디오 프레임간의 optical flow를 추정하는 네트워크로 구성되어 있다.
본 논문에서는 파노라믹 영상 모델링에 근거한 비디오 압축 전송 방법을 제안한다. 제안한 방법은 회전 카메라에 입력되는 영상에서 배경 영상과 움직이는 물체로 분리하고 차영상을 추출하여 압축/전송하는 방법을 사용한다. 제안한 비디오 압축 시스템은 초기화 과정에서 전송된 파노라믹 영상으로부터 배경영상을 합성할 수 있도록 파라메터 만을 전송하게 된다. 본 논문 에서는 정확한 배경 합성을 위한 정확한 카메라 모델링 기반 파노라믹 영상 합성법을 제시하며, 이를 바탕으로 비디오 압축에 응용하는 방법을 제안하였다. 제안한 비디오 압축방법에 의하여 기존의 JPEG-2000이나 MPEG-4 비디오 압축 방법에 비하여 PSNR 관점에서 $2{\sim}4dB$ 효율적임을 보였다.
영상 내 흔들림은 비디오의 가시성을 떨어뜨리고 영상처리나 영상압축의 효율을 저하시킨다. 최근 디지털 영상처리 분야에 딥러닝이 본격 적용되고 있으나, 비디오 안정화 분야에 딥러닝 적용은 아직 초기 단계이다. 본 논문에서는 Wobbling 왜곡 경감을 위한 triplet 형태의 CNN 기반 비디오 안정화기 구조를 제안하고, 비디오 안정화기 학습을 위한 학습데이터 합성 방법을 제안한다. 제안한 CNN 기반 비디오 안정화기는 기존 딥러닝 기반 비디오 안정화기와 비교되었으며, Wobbling 왜곡은 감소하고 더 안정적인 학습이 이루어지는 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.