디지털 TV 서비스의 시작으로 시청자의 효율적인 방송 컨텐츠 이용의 필요성이 제시되었고, 이를 위한 사용자 맞춤형 서비스와 방송 컨텐츠의 특징 추출 및 표현 방법 등, 지능형 TV에 대한 연구가 수행되고 있다. 지능형 TV의 방송 컨텐츠의 비디오 요약과 비디오 하이라이트 등의 제작을 위해 MPEG-7 비주얼 기술자를 이용하여 비주얼 특성을 추출할 수 있다. 특히 비디오의 컬러 특징을 추출하는 MPEG-7 컬러 기술자를 이용한 특징 추출 위해서는 압축된 비디오를 복호하고 비디오의 프레임을 획득하여 특징을 추출하게 되지만, 이 과정은 비주얼 특징 추출 시간을 증가시켜 압축된 방송용 컨텐츠에 MPEG-7 컬러 기술자의 적용을 어렵게 한다. 본 논문은 압축된 비디오의 컬러 특성 추출 속도의 향상을 위해 비디오 압축 영역에서 MPEG-7 컬러 기술자를 적용할 수 있는 방법을 제안하였다. 압축된 비디오에서 DC 프레임을 추출하여 컬러 특징 추출 시간이 감소하였고 검색 율의 변화는 크지 않았다. 본 논문에서 제안한 방식은 방송용으로 압축된 비디오의 비주얼 특징을 고속으로 추출할 수 있는 방법으로의 활용이 가능할 것이다.
본 논문에서는 기존에는 샷 경계 검출에 초점을 맞춘 것과는 달리 본 논문에서는 샷 보다 상위레벨인 비디오 씬 추출에 초점을 맞추어 디지털 비디오를 구조화하는 시스템을 제안한다. 샷간의 유사도를 측정하기 위해서 칼라와 모션 특징을 이용하였으며, 비디오 내의 동적 또는 정적 특성을 반영하기 위해서 적응적 가중치를 적용하였다. 칼라 특징을 추출하기 위해서 각 샷의 내부에서 대표 프레임을 추출하였고, 각 샷 내부의 모션 정보는 MPEG 비디오 모션 벡터를 이응해서 추출하였다. 또한, 비디오 씬 분할 시 연산 시간을 줄이기 위한 기법을 제시하였다. 마지막으로 추출된 비디오 씬에 대해서 성능평가를 하였다.
비디오 데이터에서 캡션은 비디오의 중요한 부분과 내용을 나타내는 가장 보편적이 방법이다. 본 논문에서는 축구 비디오에서 캡션이 갖는 특징을 분석하고 캡션에 의한 키 프레임을 추출하도록 하며, 비디오 요약 생성 규칙에 따라 요약된 비디오를 생성하도록 한다. 키 프레임 추출은 이벤트 발생에 따른 캡션의 등장과 캡션 내용의 변화를 추출하는 것으로 탬플리트 매칭과 지역적 차영상을 통하여 추출하며 샷의 재설정 통하여 중요한 이벤트를 포함한 요약된 비디오를 생성하도록 한다.
비디오 데이터에서 캡션은 비디오의 중요한 부분과 내용을 나타내는 가장 보편적인 방법이다. 본 논문에서는 축구 비디오에서 캡션이 갖는 특징을 분석하고 캡션에 의한 키 프레임을 추출하도록 하며, 비디오 요약 생성 규칙에 따라 요약된 비디오를 생성하도록 한다. 키 프레임 추출은 이벤트 발생에 따른 캡션의 등장과 캡션 내용의 변화를 추출하는 것으로 탬플리트 매칭과 지역적 차영상을 통하여 추출하며 샷의 재설정 통하여 중요한 이벤트를 포함한 요약된 비디오를 생성하도록 한다.
비디오 데이터에서 캡션은 비디오의 중요한 부분과 내용을 나타내는 가장 보편적인 방법이다. 본 논문에서는 축구 비디오에서 캡션이 갖는 특징을 분석하고 캡션에 의한 키 프레임을 추출하도록 하며, 비디오 요약 생성 규칙에 따라 요약된 비디오를 생성하도록 한다. 키 프레임 추출은 이벤트 발생에 따른 캡션의 등장과 캡션 내용의 변화를 추출하는 것으로 탬플리트 매칭과 지역적 차영상을 통하여 추출하며 샷의 재설정 통하여 중요한 이벤트를 포함한 요약된 비디오를 생성하도록 한다.
최근 정보통신의 발달과 함께 인터넷에 접속하는 사용자 수와 그에 따른 비디오 데이터의 전송량이 늘어나는 추세이다. 이렇게 늘어나는 많은 비디오 데이터를 관리하고 분석하기 위해서 최근에는 딥 러닝 기법을 많이 활용하게 된다. 일반적으로 비디오 데이터에 딥 러닝 모델을 학습할 때 컴퓨터 자원의 한계로 인해 전체 비디오 프레임에서 균등한 간격 또는 무작위로 프레임을 선택하는 방법을 많이 사용한다. 하지만 학습에 사용되는 비디오 데이터는 항상 시간 축에 따라 같은 문맥을 담고 있는 Trimmed 비디오라고 가정할 수가 없다. 만약 같지 않은 문맥을 지닌 Untrimmed 비디오에서 균등한 간격 또는 무작위로 프레임을 선택해서 사용하게 된다면 비디오의 범주와 관련이 없는 프레임이 샘플링 될 가능성이 있기 때문에 모델의 학습 및 최적화에 전혀 도움이 되지 않는다. 이를 해결하기 위해 우리는 각 비디오 프레임에서 심층 특징을 추출하여 평균값을 계산하고 이와 각 추출된 심층특징들과 코사인 유사도를 계산해서 얻은 유사도 점수를 바탕으로 Untrimmed 비디오에서 의미 있는 비디오 프레임을 추출하는 기법을 제안한다. 그리고 Untrimmed 비디오로 구성된 데이터셋으로 유명한 ActivityNet 데이터셋에 대해서 대표적인 2가지 프레임 샘플링 방식(균등한 간격, 무작위)과 비교하여 우리가 제안하는 기법이 Untrimmed 비디오에서 효과적으로 비디오의 범주에 해당하는 의미 있는 프레임 추출이 가능함을 보일 것이다. 우리가 실험에 사용한 코드는 https://github.com/titania7777/VideoFrameSampler에서 확인할 수 있다.
본 논문은 H.264/AVC 비디오 압축영역에서 비디오 복제 방지기법의 일종인 CBCD(Content Based Copy Detection)에 사용 될 수 있는 비디오 시그너쳐 (Video Signature) 추출 방법을 제안한다. 기존의 비디오 시그너쳐 추출방법은 모두 비디오 공간영 역에서 수행되기 때문에 압축된 비디오 스트립으로부터 시그너쳐를 추출하기 위해서는 비디오를 모두 복호해야 하는 단점을 가지고 있었다. 하지만 제안하는 방법에서는 비디오 압축영역에서 섬네일(Thumbnail)을 빠르게 구성하고 구성된 섬네일을 이용하여 비디오 시그너쳐를 추출하여 이와 같은 단점을 극복하였다. 밝기 순서 정보를 추출하는 실험결과로부터 제안하는 방법은 기존의 방법보다 80.98%의 정확도를 유지하면서 약 2.8배 빠르게 시그너쳐를 추출할 수 있었다.
비디오 하이라이트(highlights)는 원래의 비디오 보다 짧고 많은 양의 의미를 갖는다. 기존의 파노라마 형태의 추상화 기법은 여러 프레임을 하나의 프레임으로 모자이크하는 형태이었고, TV 드라마 하이라이트 방법은 카메라의 이동이나 특수효과에 의존하기 때문에 스포츠 비디오에 적용은 부적합하다. 이 논문에서는 축구 비디오를 대상으로 시각정보와 자막을 이용하는 새로운 비디오 하이라이트 생성 방법과 이벤트 기반 비디오 인덱싱 방법을 제안한다. 하이라이트 생성은 하이라이트 생성 규칙에 따라 자막에 의해 추출된 TIT을 중심으로 시각정보에 의해 추출된 샷을 합성하여 생성하였고, 인덱싱은 자막으로 추출된 샷은 주요소로, 시각정보에 의해 추출된 샷은 부가적 요소로 구성하였다. 실험에서는 샷 추출기법 중 대표적인 컬러히스토그램과 $\chi$$^2$히스토그램과의 성능을 비교하여 제안한 하이라이트 기법이 다른 방식보다 우수함을 증명하였다.
산업정보사회가 발달함에 따라 다양한 형태의 비디오 데이터들이 여러 분야에서 대량으로 생성되고 있다. 이에 따라 이들의 가공을 통해 비디오에 나타난 의미 정보를 추출하려는 다양한 접근들이 시도되고 있으며, 최근 들어 데이터 마이닝을 이용한 기법에 대한 관심들이 증대되고 있다. 그러나 기존의 연구 대상에서 비디오 데이터를 기본으로 하여 지식 정보를 추출하기 위한 시도는 시공간적으로 방대한 비디오 데이터의 특징으로 인해 소극적으로 접근되어왔다. 본 논문에서는 유사한 비디오들로부터 효과적으로 비디오 데이터를 압축하고 특성을 추출하며 클러스터링을 통하여 형태론적인 비디오 정보로부터 직접 의미 있는 패턴을 추출하는 방법을 제안한다. 이를 위해 관심 영역 제한방법, 최소 반복도 제한방법 및 키 프레임 추출 방법 등이 포함된다. 최종적으로 실험용 비디오에 대한 마이닝 결과를 생성하고 최초의 트랜잭션과의 정확도를 비교하여 본 논문에서 제시한 기법들을 검증하였다.
일반적으로 비디오로부터 캡션을 생성하는 작업은 입력 비디오로부터 특징을 추출해내는 과정과 추출한 특징을 이용하여 캡션을 생성해내는 과정을 포함한다. 본 논문에서는 효과적인 비디오 캡션 생성을 위한 심층 신경망 모델과 그 학습 방법을 소개한다. 본 논문에서는 입력 비디오를 표현하는 시각 특징 외에, 비디오를 효과적으로 표현하는 동적 의미 특징과 정적 의미 특징을 입력 특징으로 이용한다. 본 논문에서 입력 비디오의 시각 특징들은 C3D, ResNet과 같은 합성곱 신경망을 이용하여 추출하지만, 의미 특징은 본 논문에서 제안하는 의미 특징 추출 네트워크를 활용하여 추출한다. 그리고 이러한 특징들을 기반으로 비디오 캡션을 효과적으로 생성하기 위하여 선택적 주의집중 캡션 생성 네트워크를 제안한다. Youtube 동영상으로부터 수집된 MSVD 데이터 집합을 이용한 다양한 실험을 통해, 본 논문에서 제안한 모델의 성능과 효과를 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.