• Title/Summary/Keyword: 비디오 추적

Search Result 295, Processing Time 0.028 seconds

A Study of AR Image Registration Algorithm For Augmentation Video System (증강 비디오 시스템을 위한 AR 영상 Registration 알고리즘 연구)

  • 김혜경;오해석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.454-456
    • /
    • 2001
  • 본 논문에서는 비디오 영상열 내에 컴퓨터가 생성한 가상의 3D 영상을 이음새 없이 추가하기 위한 문제에 초점을 맞추고 있다. 2단계의 견고한 통계적인 메소드는 추적된 커브들의 모델-영상 대응점으로부터 보다 정확한 자세를 평가하기 위하여 자세 계산을 위해 사용되었다. 또한, 관점의 정확성 향상을 위하여 두 개의 연속하는 영상들간에 매치될 수 있는 핵심점을 카메라 움직임에 대한 상관관계 함수로 사용하여 매칭 에러와 reprojection 에러를 포함한 비용함수를 최소화함에 의해 관점을 향상시킨다. 비디오 영상내 객체 영상과 가상의 3D 영상간에 발생하는 폐색 공간문제를 해결하기 위하여 반 자동 알고리즘을 제안하였다.

  • PDF

A Study on The Tracking and Analysis of Moving Object in MPEG Compressed domain (MPEG 압축 영역에서의 움직이는 객체 추적 및 해석)

  • 문수정;이준환;박동선
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.103-106
    • /
    • 2001
  • 본 논문에서는 MPEG2비디오 스트림에서 직접 얻을 수 있는 정보들을 활용하여 카메라의 움직임을 추정하여 이를 기반으로 하여 움직이는 객체를 추정하고자 한다. 이를 위해, 먼저 MPEG2의 움직임 벡터는 압축의 효율성 때문에 움직임의 예측이 순서적이지 못한데, 예측 프레임들의 속성을 이용하여 이를 광 플로우(Optical Flow)를 갖는 움직임 벡터(Motion Vector)로 변환하였다. 그리고 이러한 벡터들을 이용하여 카메라의 기본적인 움직임인 팬(Fan), 틸트(Tilt). 줌(Zoom) 등을 정의하였다. 이를 위하여 팬, 틸트-줌 카메라 모델의 매개변수와 같은 의미의 $\Delta$x, $\Delta$y, $\alpha$값을 정의하고자 움직임 벡터 성분의 Hough변환을 이용하여 $\Delta$x, $\Delta$y, $\alpha$값들을 구하였다. 또한 이러한 카메라 움직임(Camera Operation)은 시간적으로 연속적으로 발생하는 특징을 이용하여 각 프레임마다 구한 카메라의 움직임을 보정하였다. 마지막으로 움직이는 객체의 추정은 우선 사용자가 원하는 객체를 바운딩박스 형태로 정의한 후 카메라 움직임이 보정된 객체의 움직임 벡터를 한 GOF(Group of Pictures) 단위로 면적 기여도에 따라 누적하여 객체를 추적하고 해석하였으며 DCT 질감 정보를 이용하여 객체의 영역을 재설정 하였다. 물론 압축된 MFEG2비디오에서 얻을 수 있는 정보들은 최대 블록 단위이므로 객체의 정의도 블록단위 이상의 객체로 제한하였다. 제안된 방법은 비디오 스트림에서 직접 정보를 얻음으로써 계산속도의 향상은 물론 카메라의 움직임특성과 움직이는 객체의 추적들을 활용하여 기존의 내용기반의 검색 및 분석에도 많이 응용될 수 있다. 이러한 개발 기술들은 압축된 데이터의 검색 및 분석에 유용하게 사용되리라고 기대되며 , 특히 검색 툴이나 비디오 편집 툴 또는 교통량 감시 시스템, 혹은 무인 감시시스템 등에서 압축된 영상의 저장과 빠른 분석을 요구시 필요하리라고 기대된다.

  • PDF

Object Tracking using Statistical Properties of Multiple Candidate Blocks in Image (영상내의 다중 후보 블록의 통계적 특징을 이용한 객체추적)

  • Chun, Jae-Bong;Park, Myeong-Chul;Ha, Suk-Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.149-152
    • /
    • 2007
  • 비전 연구에 있어서 객체 추적은 무엇보다도 중요시 되어 왔다. 특히 비디오 감시 시스템에서의 객체 추적은 매우 중요하다. 본 논문에서는 영상 내에서 움직이는 객체를 추출하고 객체내의 다중 후보블록의 통계적 특징을 이용한 추적 시스템을 구성하였다. 객체를 추적하기 위해서는 먼저 움직이는 객체 추출이 선행되어야 한다. 객체 추출은 영상 내에서 배경 프레임과 매 프레임에서의 현재 프레임간의 차 연산에 의한 가중치를 이용하여 객체의 움직임을 판단하고 추출하였다. 움직이는 객체는 본 논문에서 제안한 다중 후보 블록 알고리즘을 수행하여 추적에 필요한 통계 값을 획득한다. 통계 값으로는 방향성에 필요한 블록의 중심 좌표 값과 객체추적에 필요한 객체간의 매칭 정도를 사용하였다. 본 논문에서 제안한 추적 시스템은 민감한 빛의 변화에도 강건하였으며, 특정 블록에 대해서만 연산 수행을 수행하므로 컴퓨터의 연산을 줄여 실시간 추적도 가능하다.

  • PDF

Activity-based key-frame detection and video summarization in a wide-area surveillance system (광범위한 지역 감시시스템에서의 행동기반 키프레임 검출 및 비디오 요약)

  • Kwon, Hye-Young;Lee, Kyoung-Mi
    • Journal of Internet Computing and Services
    • /
    • v.9 no.3
    • /
    • pp.169-178
    • /
    • 2008
  • In this paper, we propose a video summarization system which is based on activity in video acquired by multiple non-overlapping cameras for wide-area surveillance. The proposed system separates persons by time-independent background removal and detects activities of the segmented persons by their motions. In this paper, we extract eleven activities based on whose direction the persons move to and consider a key-frame as a frame which contains a meaningful activity. The proposed system summarizes based on activity-based key-frames and controls an amount of summarization according to an amount of activities. Thus the system can summarize videos by camera, time, and activity.

  • PDF

The Walkers Tracking Algorithm using Color Informations on Multi-Video Camera (다중 비디오카메라에서 색 정보를 이용한 보행자 추적)

  • 신창훈;이주신
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1080-1088
    • /
    • 2004
  • In this paper, the interesting moving objects tracking algorithm using color information on Multi-Video camera against variance of intensity, shape and background is proposed. Moving objects are detected by using difference image method and integral projection method to background image and objects image only with hue area, after converting RGB color coordination of image which is input from multi-video camera into HSI color coordination. Hue information of the detected moving area are segmented to 24 levels from $0^{\circ}$ to $360^{\circ}$. It is used to the feature parameter of the moving objects that are three segmented hue levels with the highest distribution and difference among three segmented hue levels. To examine propriety of the proposed method, human images with variance of intensity and shape and human images with variance of intensity, shape and background are targeted for moving objects. As surveillance results of the interesting human, hue distribution level variation of the detected interesting human at each camera is under 2 level, and it is confirmed that the interesting human is tracked and surveilled by using feature parameters at cameras, automatically.

CNN Based Face Tracking and Re-identification for Privacy Protection in Video Contents (비디오 컨텐츠의 프라이버시 보호를 위한 CNN 기반 얼굴 추적 및 재식별 기술)

  • Park, TaeMi;Phu, Ninh Phung;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-68
    • /
    • 2021
  • Recently there is sharply increasing interest in watching and creating video contents such as YouTube. However, creating such video contents without privacy protection technique can expose other people in the background in public, which is consequently violating their privacy rights. This paper seeks to remedy these problems and proposes a technique that identifies faces and protecting portrait rights by blurring the face. The key contribution of this paper lies on our deep-learning technique with low detection error and high computation that allow to protect portrait rights in real-time videos. To reduce errors, an efficient tracking algorithm was used in this system with face detection and face recognition algorithm. This paper compares the performance of the proposed system with and without the tracking algorithm. We believe this system can be used wherever the video is used.

Robust Contour Tracking for Deformable Objects (객체 변형에 강건한 칸투어 추적)

  • 임성훈;박상철;이성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.610-612
    • /
    • 2002
  • 본 논문에서는 복잡 배경을 포함한 비디오 영상에서 객체 변형 및 겹침에 강건한 칸투어 추적 방법을 제안한다. 복잡 배경에서의 칸투어 추출 문제를 해결하기 위해 텍스처 분석과 노이즈 필터링 과정을 거치며, 보다 객체 원형에 가까운 칸투어 추출을 위해 각 칸투어 포인터 간 최소 경로 측정 알고리즘을 적용한다. 객체 추적 방법에 있어서 추출된 칸투어 정보는 연속된 프레임 상에서 객체 움직임이 발생했을 때 추적 위치를 판별하기 위한 모션 벡터로 사용되며, 시점에 따라 형태가 변하는 상황을 포함한 팬, 틸트, 줌에도 안정적 추적이 가능하게 하기 위해, 폐곡선을 이루는 각 칸투어 포인터들의 움직임 벡터와 칸투어내 면적의 변화에서 측정되는 이동도 측정을 통하여 객체 위치 추적을 가능하게 하였다. 또한 매 추적 과정을 진행함에 있어서 다른 객체의 겹침 및 모양변형 발생여부 검사과정을 통하여, 안정적인 추적이 가능하게 하였다. 본 논문에서 제안한 방법의 성능을 검증하기 위해 다양한 배경을 갖는 복잡 배경에 존재하는 비정형 객체를 대상으로 실험하였고, 제안된 방법이 효율적임을 확인할 수 있었다.

  • PDF

A Study of Matchmoving on Digital Compositing (디지털 합성에서 매치무빙에 관한 연구)

  • Lee, Hyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.231-232
    • /
    • 2022
  • 본 논문에서는 비디오 시퀀스 내에서 카메라의 움직임을 추적하고, 추적 데이터를 기반으로 2D 영상에 3D CG 객체를 추가하는 방법을 소개한다. 해당 객체가 시점을 고려한 장면 내의 피사체로써 간주되기 위해서는 3차원 가상공간 내에서 피사체의 위치를 기반으로 장면 내 기준 평면을 구성하는 점들과 카메라의 기저 축 좌표를 조정한다. 영상제작 현장에서 활용되는 소프트웨어에서 수작업으로 진행되는 과정을 살펴봄으로써 매치 무빙기법이 증강현실과 광학기반의 SLAM 등과 같은 다양한 응용분야에서의 활용을 고려할 수 있겠다.

  • PDF

A New Face Tracking and Recognition Method Adapted to the Environment (환경에 적응적인 얼굴 추적 및 인식 방법)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.385-394
    • /
    • 2009
  • Face tracking and recognition are difficult problems because the face is a non-rigid object. The main reasons for the failure to track and recognize the faces are the changes of a face pose and environmental illumination. To solve these problems, we propose a nonlinear manifold framework for the face pose and the face illumination normalization processing. Specifically, to track and recognize a face on the video that has various pose variations, we approximate a face pose density to single Gaussian density by PCA(Principle Component Analysis) using images sampled from training video sequences and then construct the GMM(Gaussian Mixture Model) for each person. To solve the illumination problem for the face tracking and recognition, we decompose the face images into the reflectance and the illuminance using the SSR(Single Scale Retinex) model. To obtain the normalized reflectance, the reflectance is rescaled by histogram equalization on the defined range. We newly approximate the illuminance by the trained manifold since the illuminance has almost variations by illumination. By combining these two features into our manifold framework, we derived the efficient face tracking and recognition results on indoor and outdoor video. To improve the video based tracking results, we update the weights of each face pose density at each frame by the tracking result at the previous frame using EM algorithm. Our experimental results show that our method is more efficient than other methods.