• Title/Summary/Keyword: 비디오 비트율 제어

Search Result 94, Processing Time 0.02 seconds

A Scheduling Method to Ensure a Stable Delay Variation of Video Streaming Service Traffic (영상 스트리밍 서비스 트래픽의 안정적인 전달 지연변이 보장을 위한 스케줄링 방안)

  • Kim, Hyun-Jong;Choi, Won-Seok;Choi, Seong-Gon
    • The KIPS Transactions:PartC
    • /
    • v.18C no.6
    • /
    • pp.433-440
    • /
    • 2011
  • In this paper, we propose a new scheduling method that can guarantee reliable jitter by minimizing the queue length variation in the streaming service provisioning such as IPTV and VoD. The amount of traffic to be delivered within a certain time is very fluid because MPEG-4 and H.264 encoders use VBR(Variable Bit Rate) for delivering video streaming traffic. This VBR characteristic increases the end-to-end propagation delay variation when existing scheduling methods are used for delivering video frames. Therefore, we propose the new scheduling method that can minimize change rate of queue length by adaptively controling service rate taking into account the size of bulk incoming packets and arrival rate for bulk streaming traffic. Video frames can be more reliably transmitted through the minimization of the queue length variation using the proposed method. We use the queueing model and also carry out OPNET simulation to validate the proposed method.

An improvement in FGS coding scheme for high quality scalability (고화질 확장성을 위한 FGS 코딩 구조의 개선)

  • Boo, Hee-Hyung;Kim, Sung-Ho
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.249-254
    • /
    • 2011
  • FGS (fine granularity scalability) supporting scalability in MPEG-4 Part 2 is a scalable video coding scheme that provides bit-rate adaptation to varying network bandwidth thereby achieving of its optimal video quality. In this paper, we proposed FGS coding scheme which performs one more bit-plane coding for residue signal occured in the enhancement-layer of the basic FGS coding scheme. The experiment evaluated in terms of video quality scalability of the proposed FGS coding scheme by comparing with FGS coding scheme of the MPEG-4 verification model (VM-FGS). The comparison was conducted by analysis of PSNR values of three tested video sequences. The results showed that when using rate control algorithm VM5+, the proposed FGS coding scheme obtained Y, U, V PSNR of 0.4 dB, 9.4 dB, 9 dB averagely higher and when using fixed QP value 17, obtained Y, U, V PSNR of 4.61 dB, 20.21 dB, 16.56 dB averagely higher than the existing VM-FGS. From results, we found that the proposed FGS coding scheme has higher video quality scalability to be able to achieve video quality from minimum to maximum than VM-FGS.

Encryption Scheme for MPEG-4 Media Transmission Exploiting Frame Dropping (대역폭 감소를 적용한 MPEG-4 미디어 전송시의 암호화 기법 연구)

  • Shin, Dong-Kyoo;Shin, Dong-Il;Park, Se-Young
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.575-584
    • /
    • 2008
  • According to the network condition, the communication network overload could be occurred when media transmitting. Many researches are being carried out to lessen the network overload, such as the filtering, load distributing, frame dropping and many other methods. Among these methods, one of effective method is frame dropping that reduces specified video frames for bandwidth diminution. B frames are dropped and then I, P frames are dropped according to dependency among the frames in frame dropping. This paper proposes a scheme for protecting copyrights by encryption, when we apply frame dropping to reduce bandwidth of media following MPEG-4 file format. We designed two kinds of frame dropping: first one stores and then sends the dropped files and the other drops frames in real-time when transmitting. We designed three kinds of encryption methods in which DES algorithm is used to encrypt MPEG-4 data: macro block encryption in I-VOP, macro block and motion vector encryption in P-VOP, and macro block and motion vector encryption in I, P-VOP. Based on these three methods, we implemented a digital right management solution for MPEG-4 data streaming. We compared the results of dropping, encryption, decryption and quality of video sequences to select an optimal method, and there is no noticeable difference between the video sequences recovered after frame dropping and the ones recovered without frame dropping. The best performance in encryption and decryption of frames was obtained when we apply the macro block and motion vector encryption in I, P-VOP.

Motion Estimation Skipping Technique for Fast Motion Estimation (고속 움직임 추정을 위한 움직임 추정 생략 기법)

  • 강현수;박성모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.726-732
    • /
    • 2003
  • The paper proposes a motion estimation (ME) technique to reduce computational complexity. It is achieved by skipping ME process for macro-blocks decided to be in no need of the operation. Thus, it is called ME skipping technique(MEST). In general, the ME is composed of integer pixel precision ME (IME) followed by half pixel precision ME (HME). The MEST is performed just before an IME process and makes a decision on skipping the IME process according to a criterion based on ME errors of adjacent macro-blocks (MBs) already encoded. When the IME process for a MB is decided to be skipped, which is called ME skip mode, the IME process is skipped and the integer pixel precision motion vector of the MB is just replaced by a predicted vector and used as the input of HME. On the other hands, the IME processes for MBs in ME non-skip mode are not skipped but normally performed. Accordingly, the MEST is very effective to reduce computational complexity when MBs in ME skip mode is abundant. In addition, when the MEST is applied to video encoder, it contributes to more accurate rate control and more robusaess for channel errors. It is experimentally shown that the MEST has the above advantages while maintaining good reconstructed image quality.