재범예측은 70년대 이전부터 전문가들에 의해서 꾸준히 연구되어온 분야지만, 최근 재범에 의한 범죄가 꾸준히 증가하면서 재범예측의 중요성이 커지고 있다. 특히 미국과 캐나다에서 재판이나 가석방심사 시 재범 위험 평가 보고서를 결정적인 기준으로 채택하게 된 90년대를 기점으로 재범예측에 관한 연구가 활발해졌으며, 비슷한 시기에 국내에서도 재범요인에 관한 실증적인 연구가 시작되었다. 지금까지 대부분의 재범예측 연구는 재범요인 분석이나 재범예측의 정확성을 높이는 연구에 집중된 경향을 보이고 있다. 그러나 재범 예측에는 비대칭 오류 비용 구조가 있기 때문에 경우에 따라 예측 정확도를 최대화함과 동시에 예측 오분류 비용을 최소화하는 연구도 중요한 의미를 가진다. 일반적으로 재범을 저지르지 않을 사람을 재범을 저지를 것으로 오분류하는 비용은 재범을 저지를 사람을 재범을 저지르지 않을 것으로 오분류하는 비용보다 낮다. 전자는 추가적인 감시 비용만 증가되는 반면, 후자는 범죄 발생에 따른 막대한 사회적, 경제적 비용을 야기하기 때문이다. 이러한 비대칭비용에 따른 비용 경제성을 반영하여, 본 연구에서 비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측모델을 제안한다. 모델의 첫 단계에서 최근 데이터 마이닝 분야에서 높은 성능으로 각광받고 있는 앙상블 기법, XGBoost를 적용하였고, XGBoost의 결과를 로지스틱 회귀 분석(Logistic Regression Analysis), 의사결정나무(Decision Trees), 인공신경망(Artificial Neural Networks), 서포트 벡터 머신(Support Vector Machine)과 같은 다양한 예측 기법과 비교하였다. 다음 단계에서 임계치의 최적화를 통해 FNE(False Negative Error)와 FPE(False Positive Error)의 가중 평균인 전체 오분류 비용을 최소화한다. 이후 모델의 유용성을 검증하기 위해 모델을 실제 재범예측 데이터셋에 적용하여 XGBoost 모델이 다른 비교 모델 보다 우수한 예측 정확도를 보일 뿐 아니라 오분류 비용도 가장 효과적으로 낮춘다는 점을 확인하였다.
최근 들어 네트워크 침입탐지시스템은 정보시스템 보안에서 매우 중요하게 인식되고 있다. 네트워크침입시스템에 데이터마이닝 기법들을 활용하는 연구들이 활발하게 그동안 활발하게 진행되어 왔다. 하지만 단순한 데이터마이닝 기법의 적용만으로는 침입탐지시스템의 효과를 극대화 할 수 없다. 침입탐지시스템은 오류의 종류에 따라 조직에 미치는 영향이 매우 상이한 특징을 갖는다. 따라서 본 연구에서는 침입탐지시스템의 오류의 특징에 따른 각기 다른 데이터마이닝 기법을 적용하는 방안을 제시하였다. 또한 국내에서 사용된 실제 네트워크를 통한 침입공격에 관한 데이터를 수집하고, 신경망, 귀잡적 학습법, 러프집합을 적용하여 국내 데이터 특성을 고려한 네트워크 침입탐지모형을 제시하였다.
This study investigates the application of data mining techniques such as artificial neural networks, rough sets, and induction teaming to the intrusion detection systems. To maximize the effectiveness of data mining for intrusion detection systems, we introduced the asymmetric costs with false positive errors and false negative errors. And we present a method for intrusion detection systems to utilize the asymmetric costs of errors in data mining. The results of our empirical experiment show our intrusion detection model provides high accuracy in intrusion detection. In addition the approach using the asymmetric costs of errors in rough sets and neural networks is effective according to the change of threshold value. We found the threshold has most important role of intrusion detection model for decreasing the costs, which result from false negative errors.
본 연구는 최근 그 중요성이 한층 높아지고 있는 침입탐지시스템(IDS, Intrusion Detection System)의 침입탐지모형을 개선하기 위한 방안으로 유전자 알고리즘에 기반한 새로운 통합모형을 제시한다. 본 연구의 제안모형은 서로 상호보완적 관계에 있는 이분류 모형인 로지스틱 회귀분석(LOGIT, Logistic Regression), 의사결정나무(DT, Decision Tree), 인공신경망 (ANN, Artificial Neural Network), 그리고 SVM(Support Vector Machine)의 예측결과에 적절한 가중치를 부여해 최종 예측결과를 산출하도록 하였는데, 이 때 최적 가중치의 탐색을 위한 방법으로는 유전자 알고리즘을 사용한다. 아울러, 본 연구에서는 1차적으로 오탐지율을 최소화하는 최적의 모형을 산출한 뒤, 이어 비대칭 오류비용 개념을 반영해 오탐지로 인해 발생할 수 있는 전체 비용을 최소화할 수 있는 최적 임계치를 탐색, 최종적으로 가장 비용 효율적인 침입탐지모형을 도출하고자 하였다. 본 연구에서는 제안모형의 우수성을 확인하기 위해, 국내 한 공공기관의 보안센서로부터 수집된 로그 데이터를 바탕으로 실증 분석을 수행하였다. 그 결과, 본 연구에서 제안한 유전자 알고리즘 기반 통합모형이 인공신경망이나 SVM만으로 구성된 단일모형에 비해 학습용과 검증용 데이터셋 모두에서 더 우수한 탐지율을 보임을 확인할 수 있었다. 비대칭 오류비용을 고려한 전체 비용의 관점에서도 단일모형으로 된 비교모형에 비해 본 연구의 제안모형이 더 낮은 비용을 나타냄을 확인할 수 있었다. 이렇게 실증적으로 그 효과가 검증된 본 연구의 제안 모형은 앞으로 보다 지능화된 침입탐지시스템을 개발하는데 유용하게 활용될 수 있을 것으로 기대된다.
공정가치 서열체계 정보는 각 수준에 따라 측정오류의 발생가능성과 정보비대칭 정도, 그리고 내포된 정보 위험이 다를 것으로 예상된다. 따라서 본 연구에서는 수준별 공정가치 서열체계 정보가 기업의 자본비용에 어떤 차별적인 영향을 미치는지 살펴본다. 2011년부터 2014년까지 한국주식시장에 상장된 기업들을 대상으로 실증 분석한 결과, 수준 1과 수준 2의 공정가치 변수의 회귀계수 값은 자본비용 유형에 따라 크기의 순위가 바뀌었지만, 수준 3의 회귀계수는 모든 자본비용 변수에 대하여 가장 큰 회귀계수 값을 가지는 것으로 나타났다. 또한 기업의 시장위험 관리 수준과 감사품질에 따라 공정가치 서열체계에 따른 자본비용의 관련성이 어떻게 달라지는 가를 추가적으로 분석하였으나 일관성 있는 결과를 얻을 수 없었다. 그러나 시장위험관리와 감사품질 변수를 융합하여, 동시적인 상호작용 효과를 분석한 결과, 시장위험관리 수준이 높고 감사품질이 높은 경우 수준 3의 자본비용을 증가시키는 효과가 크게 완화되는 것으로 나타났다. 따라서 공정가치 서열체계 정보는 내포된 정보위험에 따라 자본비용에 미치는 영향이 달라지며, 경영자의 시장위험관리 수준이나 감사품질에 따라 정보위험은 감소될 수 있음을 보여주었다.
최근 인터넷 사용의 증가에 따라 네트워크에 연결된 시스템에 대한 악의적인 해킹과 침입이 빈번하게 발생하고 있으며, 각종 시스템을 운영하는 정부기관, 관공서, 기업 등에서는 이러한 해킹 및 침입에 의해 치명적인 타격을 입을 수 있는 상황에 놓여 있다. 이에 따라 인가되지 않았거나 비정상적인 활동들을 탐지, 식별하여 적절하게 대응하는 침입탐지 시스템에 대한 관심과 수요가 높아지고 있으며, 침입탐지 시스템의 예측성능을 개선하려는 연구 또한 활발하게 이루어지고 있다. 본 연구 역시 침입탐지 시스템의 예측성능을 개선하기 위한 새로운 지능형 침입탐지모형을 제안한다. 본 연구의 제안모형은 비교적 높은 예측력을 나타내면서 동시에 일반화 능력이 우수한 것으로 알려진 Support Vector Machine(SVM)을 기반으로, 비대칭 오류비용을 고려한 분류기준값 최적화를 함께 반영하여 침입을 효과적으로 차단할 수 있도록 설계되었다. 제안모형의 우수성을 확인하기 위해, 기존 기법인 로지스틱 회귀분석, 의사결정나무, 인공신경망과의 결과를 비교하였으며 그 결과 제안하는 SVM 모형이 다른 기법에 비해 상대적으로 우수한 성과를 보임을 확인할 수 있었다.
해외건설공사에서는 종종 예기치 않는 환경에서 공사를 시공하는 상황에 직면하게 되는 경우가 있다. FIDIC에 있어서 예기치 않는 상황이 발생할 시 건설계약의 변경을 행하기 위해 시공자는 감독자에게 클레임을 통보하는 권리를 가지며, 발주자와 시공자 간의 화해가 성립하지 않을 경우에는 분쟁이 발생한다. 시공자가 발주자 보다 상황변화에 관한 더 상세한 자료를 가지고 있고 정보의 비대칭성을 초래하여 감독자나 중재자의 판단오류와 교섭에 의한 화해이득을 기대한 분쟁이 발생할 가능성이 있다. 본 연구에서는 분쟁 발생원인과 시공자의 클레임 이동에 착안하여 제3자에 의한 분쟁조정의 방식과 비용부담률이 분쟁발생에 관한 기법을 게임이론을 이용하여 분석하였으며 또한 그 모델을 클레임에 관한 DAB/DGB의 영향도 분석하였다. 그 결과 제3자의 조정에 있어서 과오의 확률을 작게 하는 것이 분쟁을 효율적 해결할 수 있다고 판단된다. 이에 급속한 건설시장의 변화에 대처하기 위해 해외건설공사의 계약관리 강화방안을 제시하고자 한다.
에지 네트워크 환경에서 IoT 장치가 다양하게 활용되면서 IoT 장치에서 수집되는 정보들을 여러 응용 분야에서 활용하는 연구들이 다양하게 진행되고 있다. 그러나, 네트워크 환경(간섭, 전파방해 등)에 따라 수집되는 IoT 데이터들이 누락 또는 오류가 발생하는 상황이 빈번해지면서 정확한 IoT 데이터들을 바로 적용하기가 쉽지 않은 상황이다. 본 논문에서는 에지 네트워크 환경에서 수집되는 IoT 데이터들의 오류를 줄이기 위해서 IoT 데이터의 서명 값을 랜덤하게 생성하여 비트 형태로 보안 정보(Security Information, SI) 값만을 IoT 데이터들에 각각 할당함으로써 IoT 데이터의 신뢰성을 보장하는 관리 기법을 제안한다. 제안 기법은 IoT 장치로부터 수집되는 데이터들을 비대칭적으로 서로 연계 처리하도록 다중 해쉬 체인을 적용하여 IoT 데이터를 블록체인으로 묶는다. 이때, 블록 체인화된 IoT 데이터들은 딥러닝 기반으로 상관관계 지수에 따라 가중치를 적용한 확률 함수를 사용한다. 또한, IoT 데이터의 무결성과 처리 비용을 낮추기 위해서 제안 기법은 그룹화된 IoT 데이터를 n-계층 구조로 확장 운영 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.