• Title/Summary/Keyword: 비네팅

Search Result 5, Processing Time 0.015 seconds

A Low-Complexity Processor for Joint Vignetting and Barrel distortion Correction for Wide-Angle Cameras (광각 카메라를 위한 저 복잡도 비네팅 및 배럴 왜곡 보정 프로세서)

  • Moon, Sun-A;Hong, Jin-U;Kim, Won-Tae;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.36-44
    • /
    • 2015
  • This paper proposes a low-complexity processor to correct vignetting and barrel distortion for wide-angle cameras. The proposed processor calculates the required correcting factors by employing the piecewise linear approximation so that the hardware complexity can be reduced significantly while maintaining correction quality. In addition, the processor is designed to correct the two distortions concurrently in a singular pipeline, which reduces the overall complexity. The proposed processor is implemented with 18.6K logic gates in a $0.11{\mu}m$ CMOS process and shows the maximum correction speed of 200Mpixels/s for correcting an image of which size is $2048{\times}2048$.

Image Restoration for Detecting Muras in TFT-LCD Panels (TFT-LCD 패널의 불량 검출을 위한 영상 복원)

  • Choi, Kyu-Nam;Yoo, Suk-I.
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.953-960
    • /
    • 2007
  • To correctly detect muras, visual defects in TFT-LCD panels, image distortion occurring on the profess of capturing panels should be corrected. In general vision systems, there are several known methods to restore the observed image. However, the vignetting effect particularly shown only in panel images cannot be easily restored through traditional methods because it is combined with background non-uniformity due to the unique characteristic of panel. To increase the reliability of image restoration, the vignetting effect should be properly corrected after being separated from image background. Therefore, in this paper we present a new method to analyze and correct the vignetting effect of panel images using principal component analysis. Experimental results for a total of 175 test images showed that the average contrast error of the muras in the distorted images was reduced from 37% to 11% and the mura misidentification rate was decreased from 14.8% to 2.2% by image restoration.

A Method for Thresholding and Correction of Skew in Camera Document Images (카메라 문서 영상의 이진화 및 기울어짐 보정 방법)

  • Jang Dae-Geun;Chun Byung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.3 s.35
    • /
    • pp.143-150
    • /
    • 2005
  • Camera image is very sensitive to illumination that result in difficulties for recognizing character. Also Camera captured document images have not only skew but also vignetting effect and geometric distortion. Vignetting effect make it difficult to separate characters from the document images. Geometric distortion, occurred by the mismatch of angle and center position between the document image and the camera, make the shape of characters to be distorted, so that the character recognition is more difficult than the case of using scanner. In this paper, we propose a method that can increase the performance of character recognition by correcting the geometric distortion of document images using a linear approximation which changes the quadrilateral region to the rectangle one. The proposed method also determine the quadrilateral transform region automatically, using the alignment of character lines and the skewed angles of characters located in the edges of each character line. Proposed method, therefore, can correct the geometric distortion without getting positional information from camera.

  • PDF

Evaluation of Dose Distribution of 6 MV X-ray using Optical Dosimetry (광 도시메트리시스템을 이용한 치료용 6 MV X선 선량분포 평가)

  • Kim, Sunghwan
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.925-932
    • /
    • 2019
  • In this paper, we developed optical dosimetry system with a plastic scintillator, a commercial 50 mm, f1.8 lens, and a commercial high-sensitivity CMOS (complementary metal-oxide semiconductor) camera. And, the correction processors of vignetting, geometrical distortion and scaling were established. Using the developed system, we can measured a percent depth dose, a beam profile and a dose linearity for 6 MV medical LINAC (Linear Accelerator). As results, the optically measured percent depth dose was well matched with the measured percent depth dose by ion-chamber within 2% tolerance. And the determined flatness was 2.8%. We concluded that the optical dosimetry system was sufficient for application of absorbed dose monitoring during radiation therapy.

Processing Underwater Images for Information Extraction of Deep Seabed Manganese Nodules as New Energy Resource (미래 에너지 자원탐사를 위한 수중카메라 영상처리에 의한 심해저 망간단괴 정보추출)

  • Lee, Dong-Cheon;Yun, Seong-Goo;Lee, Young-Wook;Ko, Young-Tak;Park, Cheong-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.679-688
    • /
    • 2009
  • Worldwide exploring and research for manganese nodules, as new energy resource, distributed on the deep seabed have progressed recently. Korea Ocean Research & Development Institute(KORDI) is a central organization to exploit the manganese nodules in the Pacific Ocean with 5,000m depth. Precise exploration is required for estimating amount of recoverable deposit, and this task could be accomplished by processing digital image processing techniques to the images taken by underwater camera system. Image processing and analysis provide information about characteristics of distribution of the manganese nodules. This study proposed effective methods to remove vignetting effect to improve image quality and to extract information. The results show more reliable information could be obtained by removing the vignetting and feasibility of utilizing image processing techniques for exploring the manganese nodules.