• Title/Summary/Keyword: 비내력 경량벽체

Search Result 8, Processing Time 0.019 seconds

Evaluations of Shear performance and Compressive strength of Light-weight hybrid panel (경량합성벽체의 전단성능 및 압축내력 평가)

  • Lee, Dong Hyuck;Lee, Sang Sup;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.33-43
    • /
    • 2005
  • This paper presents the test results and evaluations for the energy dissipation capacity and compressive performance of light-weight hybrid panels. A total of 26 full-scale specimens of light-weight hybrid panels were tested. The parameters include the presence of light-weight foamed mortar, the specific gravity of light-weight foamed mortar (0.6, 0.8, 1.0, 1.2), the finishing materials (light-weight foamed mortar, OSB [Oriented Strand Board], gypsum board), the shape of bracing (x, ~), and the size of panels (1P-900 mm 2,400 mm, 2P-1,800 mm 2,400 mm). The results of the cyclic tests are somewhat different from those of monotonic tests, due to the different specific gravity of light-weight foamed mortar. It was found from the compressive tests that the ultimate strength and initial stiffness are increased by means of light-weight foamed mortar (2~2.5 times in ultimate strength and 2~3 times in initial stiffness).

공동주택 경량벽체 내화성능기준 설정

  • An, Jae-Hong;Yeo, In-Hwan;Jo, Gyeong-Suk;Choe, Dong-Ho;Min, Byeong-Ryeol
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.11a
    • /
    • pp.214-215
    • /
    • 2013
  • 공동주택을 기둥식 구조에서 공간을 구획하는 비내력 벽체로 사용되는 경략벽체에 요구되어지는 다양한 성능조건 중 내화성능 기준을 등급으로 구분하여 제시하고자 한다. 공동주택 경량벽체를 세대간 벽과 세대내 벽으로 구분하여 각각의 내화성능 요구수준에 맞는 성능등급을 설정하였으며, 이를 내화실험을 통하여 성능을 확인하였다.

  • PDF

Shear Resistance of Light-gauge Steel Stud Wall infilled with light-weight foamed mortar (경량기포모르터와 합성한 경량형강 벽체의 전단 저항)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.397-406
    • /
    • 2004
  • This paper presents the test and evaluation results on the shear strength and stiffness of a light steel stud wall from a lightweight foamed mortar (lightweight hybrid wall). The use of a lightweight foamed mortar was aimed at improving structural performance, thermal performance, and finish. Studiesshowed that it did not affect thermal performance, but it contributed to structural performance and finish when the unit weight was more than 0.8 (Editor's note: Please indicate the unit of measurement.). In this study, 14 specimens-whose parameters included the specific gravity of the lightweight foamed mortar (0.6, 0.8, 1.0, 1.2), the spacing of the stud (450 mm, 600 mm, or 900 mm), finishing materials (such as lightweight foamed mortar, OSB, and gypsum board), and bracing-were manufactured. Three typical, steel house-framing specimens were added to compare the test results with the 14 specimens. The results of in-plane shear tests show that the use of lightweight foamed mortar (1.15~5.38 times stronger, 1.45~13.7 times stiffer) results in ultimate strength and initial stiffness. In addition, it was possible to widen the stud spacing to up to 900 mm without decreasing shear strength. It was very important to prevent the lightweight foamed mortar from shrinking and to secure the adhesion between the steel stud and the lightweight foamed mortar to improve structural performance.

Characteristics of the Human Strength Acting on the Lightweight Wall of Buildings (인간이 경량벽체에 가하는 수평하중의 크기에 관한 연구)

  • Choi, Soo-Kyung;Roh, Yong-Woon;Kim, Sang-Heon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.473-481
    • /
    • 2015
  • The purpose of this research is to comprehend experimentally the characteristics of human strength for using as the basic data of impact resistance test method of lightweight wall. Human motions exerting static load are classified to 4 types. Pushes with two hands or shoulder are defined as the instantaneously forcing motions with hands or shoulder put on the force plate. Leanings back or one-hand against the wall are defined as motions of taking a rest in their respective comfortable posture. Human motions exerting dynamic load are classified to 3 types. Selecting 3 levels of motion strength (weak, middle, strong), 3 levels of force plate stiffness (A: 20kN/cm, B: 4.7kN/cm, C: 2.2kN/cm), and 30 male subjects, load was measured when they applied strength to the force plate. Results of this research are as follows: (1) The maximum load ratio (Pmax/W) of static load for each motion was 1.17-1.25 in two hands pushing, 0.95-0.99 in shoulder pushing, 0.16-0.18 in back leaning, and 0.12-0.15 in one hand leaning. (2) Human dynamic load and object collision were different in the load characteristics. (3) The maximum load ratio of dynamic load for each motion was 10.07 in heel kick, 4.46 in shoulder hitting, and 5.58 in fist blow.

Standardization of Impact Test Methods of Non-bearing Lightweight Wall for Building (건축용 비내력 경량벽체의 내충격성 시험방법의 표준화)

  • Kim, Ki-Jun;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.181-182
    • /
    • 2015
  • The use of non-bearing light weight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Light weight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the impact resistance test method for light weight walls by using the actual impact load obtained through load analysis test in previous studies. The impact resistance test method was divided into the test method that uses soft body and the one that uses hard body. The size of specimen was set up as height 2.4m and width 3.0m. The size and shape of the body followed those used in BS 5234-2 and so on for the compatibility with the test method used overseas. The judgment criteria for impact resistance based on test results were not defined uniformly as the assessment of functional damage can vary depending on the type of material, structural method, purpose of wall, and so on even when the same impact load was applied.

  • PDF

Standardization of Stiffness Test Method of Non-bearing Lightweight Wall for building (건축용 비내력 경량벽체의 정적 수평하중저항성 시험방법의 표준화)

  • Kim, Jin-Sik;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.185-186
    • /
    • 2015
  • The use of non-bearing lightweight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Lightweight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the stiffness (static horizontal load resistance) test method for lightweight walls by using the actual impact load obtained through the load analysis test conducted in the previous studies. The size of specimen was set up as height 2.4m and width 3.0m. Test apparatus and test methods were referred to BS 5234-2:1992. However, the loading level applied to the specimen was divided into 3 steps (3000N, 1000N, 500N) that can be applied selectively depending on the purpose of the wall. The deformation characteristics according to the same loading level were vary depending on the specimen's type, and the evaluation criteria for functional damage may vary depending on the material, method of construction, and purpose of wall. Therefore, we did not suggest unified evaluation criteria of the stiffness to the test results.

  • PDF

A Study on the Development for the Flame Retardant Lightweight Concrete Panels in Nonbearing (비 내력벽 부위의 난연성 경량 콘크리트패널 개발에 관한 연구)

  • Oh, Jae-Hoon;Park, Hae-Jin;Moon, Jong-Wook
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.377-382
    • /
    • 2010
  • 건물의 대형화 고층화로 고강도 콘크리트의 사용이 증대되면서 고강도 콘크리트의 화재 시 폭열 대책이 필요하다. 본 연구는 전국 화력발전소에서 매립되는 Bottom Ash와 EPS를 재활용하여 건축소재의 내화기준에 만족하고 자원순환 소재의 새로운 개발방향을 제시하고자 난연성이 가미된 경량콘크리트 패널을 개발하여 그 난연 성능 및 벽체로서의 성능을 실험하였다. 실험은 Bottom Ash를 활용한 코팅 경량골재를 2개 Type으로 개발하여 단위중량, Flow, 압축강도, 열전도율, 부착강도, 건조수축, 흡수율, 난연 성능을 평가하였다. 그 결과 대부분의 데이터가 KS기준에 맞게 나왔으며, 난연 성능 또한 1급으로 나왔다. 이로서 폐자재인 Bottom Ash와 EPS를 재활용하여 화재 시 난연성능이 확보됨은 물론 국가성장핵심 사업인 녹색성장에 걸맞은 새로운 경량콘크리트 패널을 개발할 수 있게 되었다.

  • PDF

An Academic Assessment of Lightweight Concrete Properties for Rhamen-type Modular Building Walls (라멘식 모듈러 건축물 벽체 적용을 위한 경량 콘크리트의 공학적 특성)

  • Jung, Ui-In;Lee, Min-Jae;Ju, Young-Gil;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.527-536
    • /
    • 2023
  • This research embarked on a comprehensive examination of the engineering characteristics of lightweight concrete intended for implementation in rhamen-type modular building walls. The concrete was formulated utilizing bottom ash and coated EPS beads, in accordance with the Korea Construction Standards Center(KCS) 14 20 20 "Lightweight Aggregate Concrete". Our findings articulate that while EPS beads tend to diminish the compressive strength of the lightweight concrete, they concurrently contribute to a notable reduction in unit mass. The porous nature of the bottom ash endows the material with diminished thermal conductivity. Significantly, a mixture containing 50% EPS beads and 50% BA20 aggregates, replacing half of the coarse aggregates, was found to meet the standard specifications.