• Title/Summary/Keyword: 비구속적 방안

Search Result 24, Processing Time 0.025 seconds

Searching for the SCM Improvement Directions through the Power Attribute and Partnership (파워 유형과 파트너십 연계를 통한 공급사슬관리 개선방안 모색)

  • Jung, Dae-Hyun;Park, Kwang-O
    • Management & Information Systems Review
    • /
    • v.35 no.3
    • /
    • pp.57-79
    • /
    • 2016
  • It is required to derive various conclusions by identifying the type of power and the relationship between SCMs and presenting practical implications. Thus, we can identify the differential effects of each type of power on SCM performance. We can contribute to develop the practical implications at more sophisticated multi-dimension by comparing results of this study with various SCM theories. Through previous studies, the source of power is largely divided into binding power and non-binding power. Binding power is classified into behavior coercion, binding reward and relationship legitimacy. Non-binding power is classified into work expertise, information superiority and value compliance. Enterprises should fully understand and recognize partners within supply chains including understanding of the source of power, imbalance and results. Thus, we look into types of power and effects on trust and commitment, and identify a causal relationship leading to collaboration and SCM performance. Specific research results are as follows. First, the binding power did not give a significant effect to the trust. However, the binding power gave a positively(+) significant effect to the commitment. Second, non-binding power showed a significant effect on both trust and commitment. As a result of analysis on total effects, it was shown that non-binding power gave indirect effects to collaboration and SCM performance. Third, it was shown that both trust and commitment significantly affected collaboration. From the perspectives of social exchange theory and trading cost theory among inter-organizational relationship theory, it may lead to SCM performance of trust, commitment and collaboration. Moreover, it was found that association of each attribute of power led to the significant result. Fourth, it was shown that trust and collaboration significantly affected SCM performance. However, commitment did not directly affect SCM performance, but it indirectly significantly affected SCM performance through collaboration. Proper use of this power can firmly build partnerships between members of the supply chain and induce the improvement on supply chain performance and satisfaction of members.

  • PDF

Impact of CSV and Power Attributes in the Supply Chain on Information Competency (공급사슬 내 CSV와 파워속성이 정보역량에 미치는 영향)

  • Park, Kwang-O
    • Management & Information Systems Review
    • /
    • v.38 no.2
    • /
    • pp.83-103
    • /
    • 2019
  • Supply chain management(SCM) requires efforts to search for methods for mutual growth with partner companies and to maintain continuous cooperative relations in order to gain a competitive edge. Because information competencies play a big role within the supply chain, it is essential to examine the relationship of information sharing and partnership quality that can affect information competency. In order to maintain continuous business relations between partner companies, it is necessary to identify the obstacles with partner companies resulting from the imbalance of power within a supply chain and to take on a strategic approach for effectively managing such obstacles. Therefore, there is a significant need to discuss strategic approach methods to enable the logic of mutual growth through the CSV that is worth learning from the partner company and the attributes of non-mediated power. CSV will be reviewed from various aspects as a new management paradigm in the future. This study aims at suggesting a continuous growth model for companies by solving social problems through the integration of CSV and the concept of non-mediated power to advance the information competencies of SCM. A total of 142 copies of survey forms for SCM Implementation Companies were using the PLS structural equation modeling for an analysis, and the following are the findings. Results of this study showed that both CSV and non-mediated power had significant impact on information sharing and partnership qualities, and the conclusion that it is possible to enhance information competency through information sharing and partnership quality. Based on this, this study proposes the implication that it is necessary to elevate awareness of CSV and non-mediated power as variables for the coexistence of SCM participating companies.

Experimental Study on Mechanical Properties and Deformation Behavior of Concrete with Recycled Aggregates and Steel Fiber (순환골재 및 강섬유를 혼입한 콘크리트의 역학적 특성 및 변형 거동에 관한 실험적 연구)

  • Lee, Hyun-Ho;Lee, Tae-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.357-363
    • /
    • 2016
  • To solve the exhaustion problem of natural aggregate which were create the high value in construction and environmental industry, recycled aggregates have considerable benefits than other materials. However, even though many researches have been conducted with recycled aggregates, building structures with recycled aggregated are rarely constructed because it has lower quality than natural aggregates have. In this study, mechanical and strain properties of recycled aggregates concrete containing steel fibers have been reviewed in order to complement performance of recycled aggregates concrete. As results, recycled aggregates concrete showed lower compressive strength and elastic modulus than plain concrete. But, recycled aggregates concrete containing steel fibers showed equivalent performance with plain concrete. In review of drying shrinkage and creep coefficient, recycled aggregates concrete containing steel fibers showed similar behavior with plain concrete in the range of 0.5 Vol.% fiber content rate by internal restraint effect, moisture transport restraint effect and strength enhancement effect of steel fiber. Therefore, it is considered that mixing steel fibers with concrete is the effective method as a active application plan for recycled aggregates.

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

Analysis on Fault Current Limiting Characteristics of a Flux-Lock Type HTSC Fault Current Limiter with Hysteresis Characteristic (히스테리시스 특성을 고려한 자속구속형 고온초전도 사고전류 제한기의 사고전류 제한특성 분석)

  • Lim, Sung-Hun;Choi, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.94-98
    • /
    • 2007
  • The fault current limiting characteristics of a flux-lock type superconducting fault current limiter (SFCL) considering hysteresis characteristics of a flux-lock reactor, which is an essential component of the flux-lock type SFCL, were investigated. In the normal state, the hysteresis loss of iron core in the flux-lock type SFCL does not happen due to its winding's structure. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. Through the hysteresis curves together with the fault current level due to the inductance ratio between the primary and the secondary windings, the increase of the number of turns in the secondary winding of the flux-lock type SFCL made the fault current level increase. On the other hand, the saturation of iron core was prevented.

Mid-course Trajectory Optimization for Boost-Glide Missiles Based on Convex Programming (컨벡스 프로그래밍을 이용한 추진-활공 유도탄의 중기궤적 최적화)

  • Kwon, Hyuck-Hoon;Hong, Seong-Min;Kim, Gyeong-Hun;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • Mid-course trajectory of the missiles equipped with seeker should be designed to detect target within FOV of seeker and to maximize the maneuverability at the point of transition to terminal guidance phase. Because the trajectory optimization problems are generally hard to obtain the analytic solutions due to its own nonlinearity with several constraints, the various numerical methods have been presented so far. In this paper, mid-course trajectory optimization problem for boost-glide missiles is calculated by using SOCP (Second-Order Cone Programming) which is one of convex optimization methods. At first, control variable augmentation scheme with a control constraint is suggested to reduce state variables of missile dynamics. And it is reformulated using a normalized time approach to cope with a free final time problem and boost time problem. Then, partial linearization and lossless convexification are used to convexify dynamic equation and control constraint, respectively. Finally, the results of the proposed method are compared with those of state-of-the-art nonlinear optimization method for verification.

Trajectory Optimization of Supersonic vehicle and its Application (초음속 비행체의 궤적최적화와 연구응용 방향)

  • Park, Jung-Woo;Sung, Hong-Gye;Tahk, Min-Jea
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.411-413
    • /
    • 2009
  • This paper deals with supersonic vehicle. A supersonic vehicle has very complicated and high nonlinear thrust characteristics with respect to outer and inner environment during operation. For this reason, supersonic vehicle has many maneuver constraints and allows to operate within more narrow flight envelope. In this paper, trajectory optimization of supersonic vehicle is accomplished. The trajectory optimization problem is formulated by a discrete parameter optimization problem and the operation constraints are considered during trajectory optimization. It is shown that results of trajectory optimization give senses to fuel supply and nozzle throttle area control into effectiveness. Furthermore, general operation direction and its application for supersonic vehicles are discussed.

  • PDF

Evaluation of Minimum Spiral Reinforcement Ratio of Circular RC Columns (철근콘크리트 원형기둥의 나선철근 최소철근비에 대한 평가)

  • Kim, Young-Seek;Kim, Hyeong-Gook;Park, Cheon-Beom;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2017
  • Spiral reinforcement in a circular column plays an effective role in the ductile behavior of a column through position fixing and buckling restraining of the longitudinal reinforcement, and confining core-concrete. Each country has suggested the minimum volumetric ratio of spiral reinforcement in order to secure the ductility of concrete columns. The minimum volumetric ratio of spiral reinforcement suggested by ACI 318-14 and the national concrete structure design standard was developed based on the theory of Richard et al. (1928); furthermore it has been used until now. However, their theory cannot consider the effects of high strength concrete and high strength reinforcement, and arrangement condition of the spiral reinforcement. In this study, a modified minimum volumetric ratio equation is suggested, which is required to improve the ductility of reinforced concrete circular columns and to recover their stress. The modified minimum volumetric ratio equation suggested here considers the effect of the compressive strength of concrete, the yield strength of spiral reinforcement, the cross sectional area of columns, the pitch of spiral reinforcements and the diameter of spiral reinforcement. In this paper, the validity of the minimum volumetric ratios from ACI 318-14 and this study was investigated and compared based on the results of uniaxial compression experiment for specimens in which the material strength and the spiral reinforcements ratio were used as variables. In the end of the study, the modification method for the suggested equation was examined.

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

Reduction of Coupling in Tensile and Flexure Composite Specimens (인장 및 굽힘 복합재료 시험편의 커플링 완화 방안)

  • 정일섭
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.82-90
    • /
    • 1999
  • The mechanical properties of generally orthotropic materials are conventionally measured by performing off-axis tensile and flexure tests. However, the inevitable coupling between tension and shear in case of tensile test or bending and twisting in flexure test case induces nonuniform displacement and stress fields. Consequential stress concentration along the boundary of specimens would result in inaccurate modulus and underestimated strength. This paper proposes the variation of specimen geometry in terms of appropriate obliquity of loaded boundary. For the purpose, classical lamination theory is transformed into skewed coordinate, and characteristic equations for both of unidirectional and laminated composite specimens are formulated. Finite element analysis is employed to show the validity of the skewedness in tensile and bending test specimens.

  • PDF