• Title/Summary/Keyword: 비개착식

Search Result 29, Processing Time 0.021 seconds

Fundamental study on the development of Filling materials for Trenchless Emergency Restoration of Ground cavity (비개착식 지반공동 긴급복구를 위한 충전재료 개발에 관한 기초 연구)

  • YU, Nam-Jae;Choi, Ju-Hyun;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • Recently, there have been a lot of incidents related to ground sinks in urban areas, but restoration work is complicated and inconvenience due to on-site control, and particularly, grouting and soil filling are generally applied as recovery measures, but when the grouting or the soil filling is carried out, material segregation phenomenon occurs in the ground or a lot of restoration amount is often required, depending on the state of sinks and the existence of groundwater under the ground and the soil can be lost due to the flow of the ground water, and thus the purpose of this study is to develop a pouch-type filler applied to a trenchless method for emergency reinforcement of the ground sinks with the aim of quick recovery of the ground sink in urban areas, and as a result, it was confirmed that compression strength and the expansion ratio were different according to the temperature of ground water and the compression strength and the expansion ratio could be controlled by mixing alumina powder.

Development of 3-D Flow Model for Porous Media with Scenario-based Ground Excavation (지반굴착 시나리오 기반의 다공성 매질에 대한 3차원 유동해석모델 구축)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In recent years, ground subsidence has been frequently occurred by underground cavities due to the excessive groundwater inflow, caused by poor construction and management, during tunnel excavation and underground structure construction. In this study, a numerical model (SEEFLOW3D) was developed to estimate groundwater fluctuations for saturated-unsaturated poros media, evaluates the impact on ground excavation with open cut and non-open cut scenarios. In addition, the visual MODFLOW was applied to demonstrate the verification of the model compared with both results. Our results indicated that the RMSE and NRMSE was obtained to range over -3.95~5.7% and 0.56~4.62%, respectively. The developed model was expected to estimate groundwater discharges and apply analysis tool for optimum design of waterproof wall in future.

A study on the normal project duration development for the construction of multi-utility tunnel in the existing city (기존시가지의 공동구 건설을 위한 표준공기 산정에 대한 연구)

  • Lee, Seong-Won;Lee, Pil-Yoon;Byun, Yo-Seph;Cho, Choong-Yeun;Lee, Min-jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.677-685
    • /
    • 2018
  • In construction, schedule management is the basic but important step, for the effective schedule management, the preparation of the reasonable schedule table should be prioritized. In the design stage, the optimal construction period can be selected through comparison of various conditions and construction methods considering weather conditions and site characteristics. But, At the planning phase, it is difficult to select the effective method and calculate the proper construction period by the basic data(D/B) analysis. In this paper, the construction method considering characteristics of each type and conditions of existing city was selected. For the reasonable duration calculation, we analyzed the unit schedule for RC method for open type and Shield TBM method for tunnel type. The normal project duration of construction assuming of 1,200m of extension and every 200m of ventilation was prepared by integrating each unit schedule. It was analyzed that it took 893 days for the open type and 616 days for the tunnel type. The results of this study will help to make type selection and normal project duration more easily in the planning phase. If it is linked to the design stage, it will be easy to estimate the process and construction cost.

Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method (수치해석기법을 이용한 개착식 지반굴착공사의 영향인자 분석)

  • Seong, Joo-Hyun;Kim, Yong-Soo;Shin, Byoung-Gil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2013
  • In this study, an analysis about the causes of different types of excavation on accidents is required in order to prevent the frequently occurring accidents related to the earth retaining structure and excavation. Also, analysis of influence was performed by using numerical typical soil conditions and construction trend using numerical analysis method. According to the analysis results of 25 accident cases, the main influence factors were found as following: insufficient of soil survey, instability of temporary facility and lack of groundwater treatment, etc. Furthermore, in the numerical analysis result of 22 cases, drainage method was occurred larger settlement than waterproof method in the Inland. In case of applying the earth anchor method, it needs more detailed in the regions, which are discovered soft ground or rock discontinuities. Also, The consolidated clay absolutely needs further consideration of excess hydrostatic pressure.

Identification of damage states and damge indices of single box tunnel from inelastic seismic analysis (비탄성 지진 해석을 통한 박스 터널의 손상 상태 및 손상 지수 규명)

  • Park, Duhee;Lee, Tae-Hyung;Kim, Hansup;Park, Jeong-Seon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • In a performance-based design, the structural safety is estimated from pre-defined damage states and corresponding damage indices. Both damage states and damage indices are well defined for above-ground structures, but very limited studies have been performed on underground structures. In this study, we define the damage states and damage indices of a cut-and-cover box tunnel which is one of typical structures used in metro systems, under a seismic excitation from a series of inelastic frame analyses. Three damage states are defined in terms of the number of plastic hinges that develop within the structure. The damage index is defined as the ratio of the elastic moment to the yield moment. Through use of the proposed index, the inelastic behavior and failure mechanism of box tunnels can be simulated and predicted through elastic analysis. In addition, the damage indices are linked to free-field shear strains. Because the free-field shear strain can be easily calculated from a 1D site response analysis, the proposed method can be readily used in practice. Further studies are needed to determine the range of shear strains and associated uncertainties for various types of tunnels and site profiles. However, the inter-linked platform of damage state - damage index - shear wave velocity - shear strain provides a novel approach for estimating the inelastic response of tunnels, and can be widely used in practice for seismic designs.

Investigation Study on Underground Cavity Scale Estimation Based on GPR Exploration (지하공동 규모 평가를 위한 GPR 탐사 기반의 조사 연구)

  • Byoung-Jo Yoon;Han-Joo Lim;Yeon-Gyu Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.737-746
    • /
    • 2023
  • Purpose: Ground subsidence due to cavity can bring about various problems, such as casualties, decrease of the safety of the structures, and indirect social costs. Therefore, ground subsidence should be prevented through the exploration and recovery of the cavity under the pavements. Method: In this study, GPR exploration method was carried out on both actual roadway and mock-up site to compensate for the problems caused by excavation and restoration process. Result: This study compared the cavity scales obtained from GPR exploration results and the direct excavation of the identified cavity. It was confirmed that the predicted soil depth by GPR exploration was similar to the identified soil depth, but the predicted cavity scale by GPR exploration overestimated the longitudinal and cross-sectional widths compared to the identified cavity scale. Conclusion: Based on the correlation between the predicted cavity scales by GPR exploration, it is possible to qualitatively estimate the cavity scales using the empirical formula proposed in this study.

Studies on Behavior Characteristics of Retrofitted Cut-and-Cover Underground Station Using Centrifuge Test Results (원심모형실험을 이용한 내진 보강된 개착식 지하역사의 거동특성 연구)

  • Kim, Jin-Ho;Yi, Na-Hyun;Lee, Hoo-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.24-33
    • /
    • 2017
  • Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

Filling System Analysis for Cavity in Ground using DEM (개별요소해석을 이용한 지반공동부 주입시스템 분석)

  • Han, Jung-Geun;Kim, Young-Ho;You, Seung-Kyong;Chung, Da-Som
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.119-126
    • /
    • 2018
  • The ground cavity occurring in the downtown area is on the increase. However, when ground subsidence is occurred or a cavity that causes it to occur is found, time and economic difficulties are follwed in recovery. In advance, this study conducted to develop filling system for reinforcement material which is consist of polymer pouch and admixture as a new filler material. We developed a polymer pouch that is water soluble in the precedent study. Since the filling system is trenchless method and don't need any plant, it has time and economic benefits. This system uses air pressure to filling out cavity in a short time. We estimate this system with respect to filling speed and filling ratio by model experiment. In addition, we could confirm various filling condition using DEM Analysis. So, we could develop filling system and analysis it.

Numerical Analysis and Laboratory Experiment of Rapid Restoration of Underground Cavity Using Expansive Material without Excavation (팽창재료를 이용한 지하공동의 비개착식 긴급복구 공법에 대한 실내실험 및 수치해석)

  • Lee, Kicheol;Choi, Byeon-Ghyun;Park, Jongho;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to evaluate the suitability of emergency underground cavity restoration method filling cavity with expansive material based on numerical analysis. For the numerical analysis, experiments were conducted to evaluate properties of expansive material. Based on the measured expansion pressure of the expansive material from the experiment, behavior of underground cavity restoration with various cavity dimensions (variation of height and width of rectangular-shape cavity) was numerically assessed. As a result of analysis, the vertical displacements of the top and bottom of cavity were significantly influenced by the cavity width and lateral displacements of cavity sides were highly dependent on cavity height. These vertical and lateral displacements were increased with increasing expansion pressure of expansive material. Also, when the expansion pressure was applied, the vertical displacement of the upper surface layer of the road was less dependent on cavity height, and was greatly influenced by cavity width.