In this study, the method of quality measurement for the statistical usefulness of de-identified data was examined in terms of prediction accuracy by statistical modeling. In the era of the 4th industrial revolution, effective use of big data is essential to innovation through information and communication technology, but personal information issues are constrained to actively utilize big data. In order to solve this problem, de-identification guidelines have been established and the possibility of actual re-identification of personal information has become very low due to the utilization of various de-identification methods. On the other hand, strong de-identification can have side effects that degrade the usefulness of the data. We have studied the quality of statistical usefulness of the de-identified data by KLT model which is a representative de-identification method, A case study was conducted to see how statistical accuracy of prediction is degraded by de-identification. We also proposed a new measure of data usefulness of the de-identified data by quantifying how much data is added to the de-identified data to restore the accuracy of the predictive model.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.684-687
/
2013
빅데이터 환경은 수많은 데이터의 조합으로 가치를 발견하여 이를 활용하는 것이다. 이러한 환경의 전제조건은 데이터의 공개 및 공유 개방이 될 것이다. 하지만 데이터 공개 시 개인정보와 같은 정보가 포함되어 법적 도덕적인 문제나 공개된 정보의 범죄 활용 등 2차적인 피해가 발생할 수 있어 데이터 공개 시 개인정보에 대한 익명화가 반드시 필요하다. 하지만 익명화된 데이터는 다른 정보와 결합을 통하여 재식별되어 비익명화 될 가능성이 항상 존재한다. 따라서 본 논문에서는 데이터 공개 시 익명화된 데이터를 공개하기 전에 재식별성에 대한 위험을 평가하는 테스트 방법론을 제안한다. 제안하는 방법론은 실제 테스트를 수행하는 3가지 과정 및 테스트 레벨 설정과 익명화 시 고려해야 할 부분으로 이루어져 있다. 제안하는 방법론을 통하여 안전한 데이터 공개 환경이 조성되어 빅데이터 시대에 개인정보에 안전한 데이터 공유와 개방이 이루어질 것으로 기대한다.
Proceedings of the Korea Database Society Conference
/
2010.06a
/
pp.75-90
/
2010
기술 수용 모델을 통하여 개인이 신 기술을 채택하여 사용하는 경향에 관한 연구가 활발히 논의되고 있다. 그러나 많은 연구가 비자발적인 시스템 환경에서 편리성, 유용성의 개선을 통한 사용의도 향상에 관한 것이다. 최근의 인터넷의 보급은 기업의 정보시스템 환경에도 많은 변화를 주고 있으며 사용자들에게도 다양한 기회를 제공하고 있다. 브라우징, 컴포넌트화를 제공하는 웹 환경으로 전환된 개인화된 정보시스템은 종전 클라이언트/서버 환경과 달리 사용자들에게 스스로 사용 환경을 구성하고 업무에 활용할 수 있는 기회를 제공하고 있다. 인트라넷 시스템을 대상으로 실증 분석을 실시한 결과 개인화를 통하여 정보시스템을 자발적인 사용 환경으로 구축하고 편리성과 유용성을 개선하여 새로운 기술 수용에 대하여 우호작인 태도를 가질 수 있으며 이를 통하여 사용 의도를 향상 시킬 수 있음을 검증하였다. 향후 자발적인 환경으로 기업의 정보시스템을 구현할 경우에 필요한 개인화 변수 및 모델을 제시하였다.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.268-271
/
2019
최근 인공지능과 빅데이터 등 최첨단 기술이 빠른 속도로 의료 정보시스템에 도입됨에 따라 환자정보를 포함한 민감한 개인정보에 대한 사이버 공격이 급증하고 있다. 다양한 개인정보 비식별화에 대한 표준이 제안되었지만, 데이터의 범주에 따른 기법 적용에 대한 연구가 미비하다. 본 논문에서는 EHR 데이터를 위한 심근경색을 대상으로 하는 원격 의료 시스템을 위한 개인정보들에 대한 민감도를 4단계로 분류하고 이에 따른 비식별화 기법에 대해 제안한다. 본 논문에서 제안한 EHR 데이터에 대한 분류 및 비식별화 기법은 다양한 의료 정보 서비스를 위한 프라이버시 보호에 활용될 수 있다.
In the era of Internet of Things and Artificial Intelligence, it has become essential to digitize mass data, which leads 'data-driven economy'. Digitalized personal data can be easily collected, stored, duplicated and analyzed. As ICT technology is evolving the concept of traditional personal data has changed. The United States, the European Union, Japan, Korea and many countries have introduced new concept of personal data into law such as de-identification, anonymization, and pseudonymization to protect and utilize digitalized personal information. These concepts are distinguishable depending on countries. Therefore, this study will be done by researching and analyzing personal data related policies of several countries. Based on this study, this paper will suggest policy on di-identification to draw the right balance between personal data protection and use, which contributes to the development of digital economy.
Proceedings of the Korea Information Processing Society Conference
/
2007.11a
/
pp.846-848
/
2007
사용자로 하여금 언제 어디서나 알맞은 서비스를 제공 받을 수 있도록 하는 유비쿼터스(Ubiquitous) 환경에 대한 연구는 최근 가장 각광 받고 있는 분야 중 하나라 할 수 있다. 그 중에서도 사용자 개개인에 최적화된 가상의 공간을 통해 서비스를 제공함으로써, 사용자 특화된 서비스를 제공하려는 노력은 최근 들어 새로이 조명 받고 있는 상황이다. 그러나, 기존 연구들은 물리적 위치에 기반한 정해진 서비스들을 사용자가 활용할 수 있게 하는 것에 주 목적이 있어, 개인화된 서비스를 궁극적 목표로 하는 개인화공간 관련 연구와는 거리가 있다 할 수 있다. 이를 극복하기 위하여 본 연구에서는 가상개인공간 (Virtual Personal World) 이라는 이름을 통하여 개인화된 서비스 기반의 서비스 플랫폼을 제안한다. 이 플랫폼을 통하여 사용자에게 물리적 공간의 제약을 벗어나, 다양한 형태의 자원 객체(Virtual Object)들을 이용한 정형화된 서비스는 물론, 사용자 개인에 최적화된 서비스 목록을 생성 및 유지 함으로써, 종래의 유비쿼터스 컴퓨팅의 약점이라 할 수 있는 물리적 공간 내에서의 일반적 서비스 제공의 틀을 벗어 나도록 하는 것에 본 연구의 목적이 있다. 제안하는 VPW 플랫폼과 서비스의 개인화를 통해 서비스의 개인화에 있어 약 7 배 다양한 서비스를 제공할 수 있었으며, 사용자에 알맞은 다양한 서비스 제공을 통해 사용자의 자동화된 서비스 제공 혜택을 입을 기회 또한 기존에 비해 29% 가량 향상됨을 확인 할 수 있었다.
Guidelines for protecting personal information are already in progress in USA, UK and other countries and announced many guideline like HIPPA. However In Our national environment, we does not have specialized guideline in national medical industries. This thesis suggest De-indentification method in South Korea by referring 'bigdata De-identification Guideline by Ministry of Science, ICT and Future Planning (2015)', ICO in U. K and IHE, NIST, HIPPA in U. S. A. We suggest also correlation between Guidelines. Corelation means common techniques in three guidelines (IHE, NIST, HIPPA in U. S. A). As Point becomes closer five points, We recommend that technique to national medical institute for De-Identification. We hope this thesis makes the best use of personal information's development in National medical institute.
In the era of the 4th industrial revolution, the big data industry is gathering attention for new business models in the public and private sectors by utilizing various information collected through the internet and mobile. However, although the big data integration and analysis are performed with de-identification techniques, there is still a risk that personal privacy can be exposed. Recently, there are many studies to invent effective methods to maintain the value of data without disclosing personal information. In this paper, a personal information protection system is investigated to boost big data utilization in industrial sectors, such as healthcare and agriculture. The criteria for evaluating the de-identification adequacy of personal information and the protection scope of personal information should be differently applied for each industry. In the field of personal sensitive information-oriented healthcare sector, the minimum value of k-anonymity should be set to 5 or more, which is the average value of other industrial sectors. In agricultural sector, it suggests the inclusion of companion dogs or farmland information as sensitive information. Also, it is desirable to apply the demonstration steps to each region-specific industry.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.552-555
/
2017
It is de-identification that emerged to find the trade-off between the use of big data and the protection of personal information. In particular, in the field of medical that deals with various semi-identifier information and sensitive information, de-identification must be performed in order to use medical consultation such as EMR and voice, KakaoTalk, and SNS. However, there is no separate law for medical information protection and legislation for de-identification. Therefore, in this study, we present the current status of de-identification of personal information, the status and case of de-identification of medical information, and finally we provide issues and solutions for medial information protection and de-identification.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.25-28
/
2006
사용자 의도 파악 (intention reading) 기술은 스마트 홈과 같은 복잡한 유비쿼터스(ubiquitous) 환경에서 사용자에게 보다 편리하고 개인화된(personalized) 서비스 제공이 가능하도록 해준다. 또한 학습 기능(learning capability)은 지식 발견(knowledge discovery)의 관점에서 의도 파악 기술의 핵심 요소 기술의 하나로 자리 매김 하고 있다. 본 논문에서는 스마트 홈 환경에서 제공 가능한 개인화된 서버스(personalized service) 중의 하나로, 개인화된 미디어 제어 방법에 대한 내용을 다룬다. 특히, 이러한 사람의 행동 패턴과 같은 데이터는 패턴 분류의 관점에서 구분해야 할 클래스(class)에 비해 입력 정보가 불충분할 경우가 많으므로 비일관적인(inconsistent) 데이터가 많으므로, 퍼지 논리(fuzzy logic)와 확률(probability)의 개념을 효과적으로 병행해야 의미 있는 지식을 추출해 낼 수 있다. 이를 위하여 반복 퍼지 지도 클러스터링 (IFCS; Iterative Fuzzy Clustering with Supervision) 알고리즘에 기반하여 주어진 데이터 패턴으로부터 확률적 퍼지 룰(probabilistic fuzzy rule)을 얻어 내는 방법에 대해 설명한다. 또한 이를 포함하는 학습 제어 시스템을 통해 개인화된 미디어 서비스를 추천해 줄 수 있는 방법에 대해서 설명하도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.