• 제목/요약/키워드: 비감도

검색결과 164건 처리시간 0.027초

동시적 위치 추정 및 지도 작성에서 Variational Autoencoder 를 이용한 루프 폐쇄 검출 (Loop Closure Detection Using Variational Autoencoder in Simultaneous Localization and Mapping)

  • 신동원;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.250-253
    • /
    • 2017
  • 본 논문에서는 동시적 위치 추정 및 지도 작성 (simultaneous localization and mapping)에서 루프 폐쇄 검출을 딥러닝 방법의 일종인 variational autoencoder 를 이용하여 수행하는 방법에 대해 살펴본다. Autoencoder 는 비감독 학습 방법의 일종으로 입력 영상이 신경망을 통과하여 얻은 출력 영상과 동일하도록 신경망을 학습시키는 모델이다. 이 때 autoencoder 중간의 병목 지역을 통과함에도 불구하고 입력과 동일한 영상을 계산해야 하는 제약조건이 있기 때문에 이는 차원 축소나 데이터 추상화의 목적으로 많이 사용된다. 여기서 한 단계 더 발전된 variational autoencoder 는 기존의 autoencoder 가 가진 단점인 입력 변수의 분포와 잠재 변수의 분포 사이에 상관관계가 없다는 단점을 해결하기 위해 Kullback-Leibler divergence 를 활용한 손실 함수를 정의하여 사용했다. 실험결과에서는 루프 폐쇄 검출에서 많이 사용되는 City-Centre 와 New College 데이터 집합을 사용하여 평가하였으며 루프 폐쇄 검출의 결과는 정밀도와 재현율을 계산하여 나타냈다.

  • PDF

도시철도 종합감시시스템에서 요구되는 객체인식 기능 및 시나리오 (Required Video Analytics and Event Processing Scenario at Large Scale Urban Transit Surveillance System)

  • 박광영;박구만
    • 한국ITS학회 논문지
    • /
    • 제11권3호
    • /
    • pp.63-69
    • /
    • 2012
  • 넓은 지역에서의 종합감시시스템 구축은 인력을 효율적으로 관리할 수 있으며 자동화된 감시망을 구축하여 비감시 지역을 줄일 수 있는 특징이 있다. 본 논문에서는 넓은 지역에서 적용할 수 있는 지능형 종합감시시스템에서 입력되는 비디오의 특징을 위치와 용도별로 분석하여 적합한 비디오 감시 알고리즘을 선택할 수 있는 방안을 제시하였다. 7가지 대표적인 상황으로서 침입, 물건 버림/없어짐, 배회, 혼잡도 측정 등이다.

효율적인 문서 자동 분류를 위한 대표 색인어 추출 기법 (A Feature Selection Technique for an Efficient Document Automatic Classification)

  • 김지숙;문현정;김영지;우용태
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
    • /
    • pp.295-302
    • /
    • 2001
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 기존의 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 비감독학습 기법에 의해 대량의 문서를 효율적으로 분류하기 위한 대표 색인어 추출 기법을 제안하였다. 컴퓨터 분야의 논문을 대상으로 각 분야별 대표 색인어를 추출하여 유사한 문서끼리 분류하는 실험을 통해 제안된 방법의 효율성을 보였다.

  • PDF

효과적인 의사결정을 위한 2단계 하이브리드 인공신경망 접근방법에 관한 연구 (A Study on the Two-Phased Hybrid Neural Network Approach to an Effective Decision-Making)

  • 이건창
    • Asia pacific journal of information systems
    • /
    • 제5권1호
    • /
    • pp.36-51
    • /
    • 1995
  • 본 논문에서는 비구조적인 의사결정문제를 효과적으로 해결하기 위하여 감독학습 인공신경망 모형과 비감독학습 인공신경망 모형을 결합한 하이브리드 인공신경망 모형인 HYNEN(HYbrid NEural Network) 모형을 제안한다. HYNEN모형은 주어진 자료를 클러스터화 하는 CNN(Clustering Neural Network)과 최종적인 출력을 제공하는 ONN(Output Neural Network)의 2단계로 구성되어 있다. 먼저 CNN에서는 주어진 자료로부터 적정한 퍼지규칙을 찾기 위하여 클러스터를 구성한다. 그리고 이러한 클러스터를 지식베이스로하여 ONN에서 최종적인 의사결정을 한다. CNN에서는 SOFM(Self Organizing Feature Map)과 LVQ(Learning Vector Quantization)를 클러스터를 만든 후 역전파학습 인공신경망 모형으로 이를 학습한다. ONN에서는 역전파학습 인공신경망 모형을 이용하여 각 클러스터의 내용을 학습한다. 제안된 HYNEN 모형을 우리나라 기업의 도산자료에 적용하여 그 결과를 다변량 판별분석법(MDA:Multivariate Discriminant Analysis)과 ACLS(Analog Concept Learning System) 퍼지 ARTMAP 그리고 기존의 역전파학습 인공신경망에 의한 실험결과와 비교하였다.

  • PDF

Performance of Differential Field Effect Transistors with Porous Gate Metal for Humidity Sensors

  • 이성필
    • 센서학회지
    • /
    • 제8권6호
    • /
    • pp.434-439
    • /
    • 1999
  • 집적형 습도센서를 위해 이중게이트 금속을 증착한 차동형 전계효과 트랜지스터를 제조하고 상대습도에 따른 드레인전류 드리프트특성을 조사하였다. 감지소자와 비감지소자의 전류차를 얻기 위해 두 트랜지스터의 종횡비는 250/50으로 같게 하였다. 제조된 습도감지 전계효과 트랜지스터의 표준화된 드레인전류는 상대습도가 30%에서 90%로 증가함에 따라 0.12에서 0.3으로 증가하였다.

  • PDF

감쇠행렬을 고려한 고유치문제의 누락된 고유치 검사 기법 (Method for checking Missed eigenvalues of Eigenvalue Problem Considering Damping Matrix)

  • 정형조;김병완;이인원
    • 한국지진공학회논문집
    • /
    • 제4권2호
    • /
    • pp.47-56
    • /
    • 2000
  • 지반-구조물 상호작용 시스템 구조물의 진동제어 시스템 복합재료 구조물과 같은 비비례 감쇠 구조물의 경우 정확한 동적응답을 얻기 위해서는 감쇠행렬을 고려한 고유치 문제를 계산하는 것이 필수적이다 그러나 대부분의 고유치 해법에서는 구하고자 하는 고유치 중 일부를 누락시킬 수 있기 때문에 어떤 고유치 해법이 실제문제에 응용 가능한 방법이 되기 위해서는 누락된 고유치의 존재 여부를 검사하는 기법을 포함하고 있어야만 한다. 비감쇠나 비례감쇠 시스템의 경우에는 널리 알려진 Sturm 수열성질을 이용하여 누락된 고유치를 쉽게 검사할 수 있는 반면에 비비례 감쇠 시스템의 경우에는 널리 알려진 Sturm 수열 성질을 이용하여 누락된 고유치를 쉽게 검사할 수 있는 반면에 비비례 감쇠 시스템의 경우에는 아직까지 검사 기법이 개발되어 있지않다 본 논문에서는 편각의 원리를 이용하여 감쇠행렬을 고려한 고유치 문제의 누락된 고유치의 존재여부를 검사하는 기법을 제안하였다 제안방법의 효용성을 검증하기 위하여 두가지 수치예제를 고려하였다.

  • PDF

대규모 데이터 분석을 위한 계층적 베이지안망 학습 (Hierarchical Bayesian Network Learning for Large-scale Data Analysis)

  • 황규백;김병희;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.724-726
    • /
    • 2005
  • 베이지안망(Bayesian network)은 다수의 변수들 사이의 확률적 관계(조건부독립성: conditional independence)를 그래프 구조로 표현하는 모델이다. 이러한 베이지안망은 비감독학습(unsupervised teaming)을 통한 데이터마이닝에 적합하다. 이를 위해 데이터로부터 베이지안망의 구조와 파라미터를 학습하게 된다. 주어진 데이터의 likelihood를 최대로 하는 베이지안망 구조를 찾는 문제는 NP-hard임이 알려져 있으므로, greedy search를 통한 근사해(approximate solution)를 구하는 방법이 주로 이용된다. 하지만 이러한 근사적 학습방법들도 데이터를 구성하는 변수들이 수천 - 수만에 이르는 경우, 방대한 계산량으로 인해 그 적용이 실질적으로 불가능하게 된다. 본 논문에서는 그러한 대규모 데이터에서 학습될 수 있는 계층적 베이지안망(hierarchical Bayesian network) 모델 및 그 학습방법을 제안하고, 그 가능성을 실험을 통해 보인다.

  • PDF

비형식의 군집 유효화 지수의 분석과 새로운 지수 개발 (Analysis and New Indices of Cluster Validity Indices in Ratio Type)

  • 김민호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.601-603
    • /
    • 2005
  • 군집 유효화 평가는 군집화 알고리즘을 진정한 의미의 비감독 학습이 가능하도록 만든다는 의미에서 그 중요성이 더해지고 있다. 본 논문에서는 이 군집 유효화 평가에 일반적으로 이용되는 군집 유효화 지수들의 설계원리를 분석하고 기존 지수들의 부합성을 분석한다. 우리는 제 (I) 부에서 합 형식의 지수들을 다루었으며, 본 논문에서는 비 형식의 지수들을 다룬다. 합형식의 CVI에서처럼 저역 필터링의 문제점을 해결하였으며, 또한, 부작용 없이 비형식의 지수들의 성능을 향상시킬 수 있는 새로운 기법을 제시한다. 새로운 지수들의 성능은 실험 학습을 통해 제시된다.

  • PDF

방진합금을 적용한 철도레일 이음매판의 진동저감 효과에 관한 연구 (Application of High Damping Alloys for Vibration Reduction in Rail Joint Bar)

  • 백승한;김정철;한동운;백진현;김태훈;김양수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.570-573
    • /
    • 2004
  • Conventional methods for reducing vibration in engineering designs may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Some alloys with a combination of high damping capacity and good mechanical properties can provide attractive techanical and economical solutions to problems involving seismic, shock and vibration isolation. In this paper, it showed the noise and vibration characteristic was compared conventional rail joint to improved rail joint(damping alloy) for reducing noise and vibration. Its applicability to rail joint is discussed.

  • PDF

SVM 을 이용한 화자의 감정상태 인식 (Recognition of Emotional State of Speaker Using Machine learning)

  • 이나라;최훈하;김현정;원일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.468-471
    • /
    • 2012
  • 음성을 통한 자동화된 감정 인식은 편리하고 다양한 서비스를 제공할 수 있어 중요한 연구분야라고 할 수 있다. 기계학습의 다양한 알고리즘을 사용하여 감정을 인식하는 연구가 진행되어 왔지만 그 성능은 아직 초보적 단계를 벋어나지 못하고 있는 실정이다. 앞선 연구에서 우리는 비감독 학습 방법으로 감성을 그룹화 하고 이것을 이용하여 다시 감독 학습을 하는 시스템을 소개 하였다. 본 연구에서 우리는 감독 학습 방법에서 사용했던 오류 역전파 알고리즘을 support vector machine(SVM) 으로 변경하고 몇 가지 구조를 변경하여 기능을 개선하였다. 실험을 통하여 성능을 측정하였으며 어느 정도 개선된 결과를 얻을 수 있었다.