• Title/Summary/Keyword: 블록암호 알고리듬

Search Result 52, Processing Time 0.018 seconds

A Security SoC embedded with ECDSA Hardware Accelerator (ECDSA 하드웨어 가속기가 내장된 보안 SoC)

  • Jeong, Young-Su;Kim, Min-Ju;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1071-1077
    • /
    • 2022
  • A security SoC that can be used to implement elliptic curve cryptography (ECC) based public-key infrastructures was designed. The security SoC has an architecture in which a hardware accelerator for the elliptic curve digital signature algorithm (ECDSA) is interfaced with the Cortex-A53 CPU using the AXI4-Lite bus. The ECDSA hardware accelerator, which consists of a high-performance ECC processor, a SHA3 hash core, a true random number generator (TRNG), a modular multiplier, BRAM, and control FSM, was designed to perform the high-performance computation of ECDSA signature generation and signature verification with minimal CPU control. The security SoC was implemented in the Zynq UltraScale+ MPSoC device to perform hardware-software co-verification, and it was evaluated that the ECDSA signature generation or signature verification can be achieved about 1,000 times per second at a clock frequency of 150 MHz. The ECDSA hardware accelerator was implemented using hardware resources of 74,630 LUTs, 23,356 flip-flops, 32kb BRAM, and 36 DSP blocks.

An Efficient Hardware Implementation of Square Root Computation over GF(p) (GF(p) 상의 제곱근 연산의 효율적인 하드웨어 구현)

  • Choe, Jun-Yeong;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1321-1327
    • /
    • 2019
  • This paper describes an efficient hardware implementation of modular square root (MSQR) computation over GF(p), which is the operation needed to map plaintext messages to points on elliptic curves for elliptic curve (EC)-ElGamal public-key encryption. Our method supports five sizes of elliptic curves over GF(p) defined by the National Institute of Standards and Technology (NIST) standard. For the Koblitz curves and the pseudorandom curves with 192-bit, 256-bit, 384-bit and 521-bit, the Euler's Criterion based on the characteristic of the modulo values was applied. For the elliptic curves with 224-bit, the Tonelli-Shanks algorithm was simplified and applied to compute MSQR. The proposed method was implemented using the finite field arithmetic circuit with 32-bit datapath and memory block of elliptic curve cryptography (ECC) processor, and its hardware operation was verified by implementing it on the Virtex-5 field programmable gate array (FPGA) device. When the implemented circuit operates with a 50 MHz clock, the computation of MSQR takes about 18 ms for 224-bit pseudorandom curves and about 4 ms for 256-bit Koblitz curves.