• Title/Summary/Keyword: 블록암호 알고리듬

Search Result 52, Processing Time 0.026 seconds

A Study on the Design and Cryptanalysis of 80-bit Block Cipher Algorithm(80-DES) (80비트 블록 암호알고리듬(80-DES)의 설계 및 비도분석에 관한 연구)

  • 윤용정;공헌택;남길현
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1994.11a
    • /
    • pp.121-131
    • /
    • 1994
  • Differential Cryptanalysis(DC) 및 선형암호분석 공격방법은 DES와 같은 비밀키 암호알고리듬을 실질적으로 공격할 수 있는 효과적인 방법들이다. 본 논문에서는 DC 및 선형암호분석을 통한 DES의 취약점을 분석하고 이를 보완할 수 있는 효과적인 80비트 블록 암호알고리듬을 설계하였다. 설계된 암호알고리즘은 DES보다 일반 특성과 DC 및 선형암호분석 공격에 대한 비도를 향상시킨 것으로 분석되었다.

  • PDF

A Crypto-processor Supporting Multiple Block Cipher Algorithms (다중 블록 암호 알고리듬을 지원하는 암호 프로세서)

  • Cho, Wook-Lae;Kim, Ki-Bbeum;Bae, Gi-Chur;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2093-2099
    • /
    • 2016
  • This paper describes a design of crypto-processor that supports multiple block cipher algorithms of PRESENT, ARIA, and AES. The crypto-processor integrates three cores that are PRmo (PRESENT with mode of operation), AR_AS (ARIA_AES), and AES-16b. The PRmo core implementing 64-bit block cipher PRESENT supports key length 80-bit and 128-bit, and four modes of operation including ECB, CBC, OFB, and CTR. The AR_AS core supporting key length 128-bit and 256-bit integrates two 128-bit block ciphers ARIA and AES into a single data-path by utilizing resource sharing technique. The AES-16b core supporting key length 128-bit implements AES with a reduced data-path of 16-bit for minimizing hardware. Each crypto-core contains its own on-the-fly key scheduler, and consecutive blocks of plaintext/ciphertext can be processed without reloading key. The crypto-processor was verified by FPGA implementation. The crypto-processor implemented with a $0.18{\mu}m$ CMOS cell library occupies 54,500 gate equivalents (GEs), and it can operate with 55 MHz clock frequency.

An Efficient Implementation of Lightweight Block Cipher Algorithm HIGHT for IoT Security (사물인터넷 보안용 경량 블록암호 알고리듬 HIGHT의 효율적인 하드웨어 구현)

  • Bae, Gi-Chur;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.285-287
    • /
    • 2014
  • This paper describes a design of area-efficient/low-power cryptographic processor for lightweight block cipher algorithm HIGHT which was approved as a cryptographic standard by KATS and ISO/IEC. The HIGHT algorithm which is suitable for the security of IoT(Internet of Things), encrypts a 64-bit plain text with a 128-bit cipher key to make a 64-bit cipher text, and vice versa. For area-efficient and low-power implementation, we adopt 32-bit data path and optimize round transform block and key scheduler to share hardware resources for encryption and decryption.

  • PDF

An efficient hardware implementation of 64-bit block cipher algorithm HIGHT (64비트 블록암호 알고리듬 HIGHT의 효율적인 하드웨어 구현)

  • Park, Hae-Won;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1993-1999
    • /
    • 2011
  • This paper describes a design of area-efficient/low-power cryptographic processor for HIGHT block cipher algorithm, which was approved as standard of cryptographic algorithm by KATS(Korean Agency for Technology and Standards) and ISO/IEC. The HIGHT algorithm, which is suitable for ubiquitous computing devices such as a sensor in USN or a RFID tag, encrypts a 64-bit data block with a 128-bit cipher key to make a 64-bit cipher text, and vice versa. For area-efficient and low-power implementation, we optimize round transform block and key scheduler to share hardware resources for encryption and decryption. The HIGHT64 core synthesized using a 0.35-${\mu}m$ CMOS cell library consists of 3,226 gates, and the estimated throughput is 150-Mbps with 80-MHz@2.5-V clock.

A Cryptographic Processor Supporting ARIA/AES-based GCM Authenticated Encryption (ARIA/AES 기반 GCM 인증암호를 지원하는 암호 프로세서)

  • Sung, Byung-Yoon;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.233-241
    • /
    • 2018
  • This paper describes a lightweight implementation of a cryptographic processor supporting GCM (Galois/Counter Mode) authenticated encryption (AE) that is based on the two block cipher algorithms of ARIA and AES. It also provides five modes of operation (ECB, CBC, OFB, CFB, CTR) for confidentiality as well as the key lengths of 128-bit and 256-bit. The ARIA and AES are integrated into a single hardware structure, which is based on their algorithm characteristics, and a $128{\times}12-b$ partially parallel GF (Galois field) multiplier is adopted to efficiently perform concurrent processing of CTR encryption and GHASH operation to achieve overall performance optimization. The hardware operation of the ARIA/AES-GCM AE processor was verified by FPGA implementation, and it occupied 60,800 gate equivalents (GEs) with a 180 nm CMOS cell library. The estimated throughput with the maximum clock frequency of 95 MHz are 1,105 Mbps and 810 Mbps in AES mode, 935 Mbps and 715 Mbps in ARIA mode, and 138~184 Mbps in GCM AE mode according to the key length.

An Efficient Hardware Implementation of ARIA Block Cipher Algorithm (블록암호 알고리듬 ARIA의 효율적인 하드웨어 구현)

  • Kim, Dong-Hyeon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.91-94
    • /
    • 2012
  • This paper describes an efficient implementation of ARIA crypto algorithm which is a KS (Korea Standards) block cipher algorithm. The ARIA crypto-processor supports three master key lengths of 128/192/256-bit specified in the standard. To reduce hardware complexity, a hardware sharing is employed, which shares round function in encryption/decryption module with key initialization module. It reduces about 20% of gate counts when compared with straightforward implementation. The ARIA crypto-processor is verified by FPGA implementation, and synthesized with a 0.13-${\mu}m$ CMOS cell library. It has 33,218 gates and the estimated throughput is about 640 Mbps at 100 MHz.

  • PDF

Security Method on the Multi-modal Biometrics Data (암호이론을 이용한 다중생체데이터 전송상의 보안)

  • Go Hyeon-Ju;Yu Byeong-Jin;Kim Yong-Min;Jeon Myeong-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.183-186
    • /
    • 2006
  • 생체인식은 정보처리시스템에 있어서 네트웍 보안, 시스템 보안, 어플리케이션 보안 등에 사용되는 개인인증 및 확인을 위한 하나의 기법으로 볼 수 있으며, 개인정보를 포함한 데이터의 보호를 위해서 본인이나 승인된 사용자만이 네트웍이나 물리적 접근 등을 통하여 접근하고자 하는 것이다. 본 논문에서는 얼굴인식과 홍채인식 시스템을 융합한 다중생체인식 시스템을 구현하였으며, 다중생체인식 시스템에서 구현된 생체데이터를 안전하게 전송할 수 있는 방법으로 블록 암호 알고리듬 ARIA를 침입에 대한 보안 방법으로 제안하였다. 이에 다중생체 특징벡터를 128비트의 블록 크기를 이용하여 암호화 하였으며, 생체 특징벡터를 이용하여 128비트의 키로 사용하였다.

  • PDF

A Hardware Implementation of SIMECK-64/128 Block Cipher Algorithm (SIMECK-64/128 블록암호 알고리듬의 하드웨어 구현)

  • Kim, Min-Ju;Jeong, Young-su;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.229-231
    • /
    • 2021
  • In this paper, we describe a hardware design of the SIMECK block cipher algorithm that can be implemented in lightweight hardware with appropriate security strength. To achieve fast encryption and decryption operations, it was designed using two-step method that reduces the number of operation rounds. The designed SIMECK cryptographic core was implemented in Arty S7-50 FPGA device and its hardware operation was verified with a GUI using Python.

  • PDF

A Hardware Implementation of lightweight block cipher TWINE (경량 블록암호 TWINE의 하드웨어 구현)

  • Choe, Jun-Yeong;Eom, Hong-Jun;Jang, Hyun-Soo;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.339-340
    • /
    • 2018
  • 본 논문에서는 경량 블록암호 알고리듬 TWINE의 하드웨어 설계에 대해 기술한다. TWINE은 80-비트 또는 128-비트의 마스터키를 사용하여 64-비트의 평문(암호문)을 암호(복호)하여 64-비트의 암호문(평문)을 만드는 대칭키 블록암호이며, s-box와 XOR만 사용하므로 경량 하드웨어 구현에 적합하다는 특징을 갖는다. 암호화 연산과 복호화 연산의 하드웨어 공유를 통해 게이트 수가 최소화 되도록 구현하였으며, 설계된 TWINE 크립토 코어는 RTL 시뮬레이션을 통해 기능을 검증하였다.

  • PDF

FPGA Implementation of ARIA Encryption/Decrytion Core Supporting Four Modes of Operation (4가지 운영모드를 지원하는 ARIA 암호/복호 코어의 FPGA 구현)

  • Kim, Dong-Hyeon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.237-240
    • /
    • 2012
  • This paper describes an implementation of ARIA crypto algorithm which is a KS (Korea Standards) block cipher algorithm. The ARIA crypto-core supports three master key lengths of 128/192/256-bit specified in the standard and the four modes of operation including ECB, CBC, CTR and OFB. To reduce hardware complexity, a hardware sharing is employed, which shares round function in encryption/decryption module with key initialization module. The ARIA crypto-core is verified by FPGA implementation, the estimated throughput is about 1.07 Gbps at 167 MHz.

  • PDF