• Title/Summary/Keyword: 블로어 도어

Search Result 7, Processing Time 0.022 seconds

An Analysis of the Building Energy Demand of Rural House and Passive type House - An Analysis of the Airtightness and Window system Performance according to using PHPP (기존 농촌주택과 패시브형 주택의 에너지 요구량 비교분석 - PHPP분석을 통한 주택의 기밀성 및 창호성능 분석을 중심으로)

  • Cho, Kyung-Min;Lee, Tae-Goo;Kim, Joo-Soo
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.55-61
    • /
    • 2011
  • Due to global warming issues caused by climate changes which are internationally being highlighted, recently, there are lots of efforts under way to reduce energy consumption in various fields. Currently, 25 percent of energy consumption in Korea are being generated from buildings and especially, nearly 54 percent of them are being consumed by households. This study, therefore, aims to consider energy consumption status in the existing rural houses and analyze structure system performance, window system performance and air-permeability of domestic passive-type buildings using PHPP which is an analysis program of building energy to improve energy consumption problems in rural areas. Then, energy reduction plans in rural houses were proposed, by comparing and analyzing energy reduction of the existing rural houses, based on these data.

The measurement study on the airtightness of dwellings based on the passive design (패시브 디자인을 적용한 주택의 기밀성에 관한 실측 사례 연구)

  • Lee, Tae-Goo;Yun, Doo-Young
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.13-20
    • /
    • 2013
  • Today, the world energy consumption in buildings occupies more than 30%. In our country, the energy consumption in buildings also occupies 25% of the entire national energy consumption. With the increasing demand of energy saving in architectural fields, there is a more interest in low-energy construction. For these low-energy housings, our country is planning to apply the energy-saving design standards at the level of passive houses in 2017. However, there is still a limitation in energy saving only with the standards on the performance of envelope in buildings. This means that unless a building is airtight even though it was well-insulated, cooling and heating energy consumption will increase due to the infiltration and leakage. Therefore, this study aims to make a comparative analysis of airtight performance by conducting a blower door test on the housings applied with passive designs, analyze the reasons why most houses fall short of the airtightness standards, and complement the airtightness problems in the inadequate parts of the buildings in order to save building energy.

A Study on the Measurement of Airtightness Performance of Detached Houses in Chung-cheong area (충청지역 단독주택의 기밀성능 실측 연구)

  • Yoon, Jong-Ho;Park, Jae-Wan;Lee, Kwang-Sung;Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.65-71
    • /
    • 2008
  • The purpose of this study is to investigate an airtightness of typical Korean detached houses with field measurements. Air leakage testings by means of blower door test in accordance with ASTM E79-8 were measured in 22 detached dwellings in Daejeon and Geumsan. The results showed that detached dwellings have an average airtightness with ACH50/20 (air chang per hour at a pressure difference of 50 Pa between inside outside) of 0.82 $hr^{-1}$ which is a higher range than for typical apartments and leakage class G by normalized leakage area of ASHRAE.

Analysis on Ventilation Performance of Natural Ventilation Systems in Multi-Family Housing Using Blower Door Test (Blower Door Test를 이용한 공동주택 자연환기시스템의 환기성능 분석)

  • Kim, Min Seok;Auh, Jin Sun;Hong, Goopyo;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.129-134
    • /
    • 2016
  • Today, natural ventilation systems are widely applied in multi-family housing. However, studies using the wind data trend line of the blower door test are insufficient. Purpose: Through this study, we will propose a computational method about ventilation performance of natural ventilation systems by conducting blower door test. Method: First, we sealed the gaps between the main systems including the natural ventilation system and conducted the blower door test. Next, the natural ventilation system was opened, the blower door test was conducted, and the difference in air flow rate between when closed and when opened was checked. Blower door test was carried out with a pressure difference of 50 Pa. Result: Therefore, the ventilation performance of the natural ventilation system was checked by drawing a trend line using the data to calculate the air flow rate at 2 Pa of the natural ventilation equipment standard pressure difference.

Developing the Construction Guideline for ZEB Based on Air-tightness of Public Buildings in Korea (국내 비주거용 건물의 기밀성능 측정 결과를 통한 기밀 시공 가이드라인 개발)

  • Bae, Minjung;Choi, Gyeongseok
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.69-74
    • /
    • 2020
  • Since the design Standard for Energy Conservation in Building was implemented in 2008 for the first time, building elements such as window and door should satisfy the minimum criteria to apply for a building. Though its regulation does not cover the whole building yet, recent demand to reduce energy consumption in building sector grows rapidly year by year and also draws a lot of interest to ensure the whole building level. For example, a Zero energy building, one of low-energy buildings, requires a customized solution to resolve the air leakage issue to meet the standards in achieving the high level of air tightness. In this study, six non-residential buildings were tested by fan pressurization method to observe the air tightness of whole building to suggest the construction guideline for air tightness of low-energy building. Five out of six tested buildings showed 0.27 to 1.16 h-1 of number of air changes except one community center. These buildings were carefully constructed not only for building planning but also for parts where there was a concern of air leakage, thereby securing high levels of air-tightness. The construction skills were developed as a checklist to manage and supervise the construction site. It is our suggestion to use this checklist at construction sites for ZEB with the high level of air-tightness.

The Measurement of Airtightness Performance of Multi-Family Housing (다가구 및 다세대 원룸주택의 기밀성능 실측연구)

  • Baek, Nam-Choon;Han, Seung-Hyeon;Lee, Wang-Je;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.117-121
    • /
    • 2014
  • Even though a study of airtightness performance of apartment and detached house have been done constantly, there are few of studies of multi-family housing which increasing every year. Therefore, this study analyzed airtightness performance of 20 households of one room in Daejeon to investigate airtightness performance standard. All experiments were performed under the same conditions except sealing windows to investigate airtightness performance without sealing windows (natural condition) and airtightness performance with sealing windows of studio apartment. As results, (1) average ACH50 without sealing windows was 19.2/h for pressurization, and 12.8/h for depressurization and (2) average ACH50 with sealing windows was 16.0/h for pressurization, and 10.7/h for depressurization and ACH50 in both condition, ACH50 under pressurization was about 50% higher than that under depressurization. Throughout this experiment, we can figure out that about 16% of air infiltration rate is occurred in windows, and the other 84% is occurred in rest of places such as Junction structure, socket and ventilating opening.

A Study of Measurement on Airtightness and Air-Flow Performance of Apartment Housing Adopting Window Frame-Type Natural Ventilation (자연환기장치가 적용된 공동주택의 기밀 및 공기유동 성능 실측 연구)

  • Chun, Chu-Young;Kim, Gil-Tae;Kim, Sun-Dong
    • Land and Housing Review
    • /
    • v.5 no.4
    • /
    • pp.325-332
    • /
    • 2014
  • The purpose of this study was to measure the airtightness and Air-Flow Performance for 7th house of small apartment houses adopted window frame-type natural ventilation. All window and living room door is provide with window frame-type natural ventilation, and there is provide with manual controller. As the object of measurement, the 6th type small apartment houses with area of $33m^2$ to $51m^2$ was selected. airtightness performance was measured at the front door using Blower door system. We measured ventilation rate per hour on 50Pa pressure different between inside and outside by the 1st to 6th cases. As a result, when the natural ventilation frame was closed, average amounts are shown as the ventilation rate per hour were 2.27ACH (CASE1). and the result is similar to general apartment house (1.65~4.28ACH). When the natural ventilation frame was open, average amounts are shown as the ventilation rate per hour were 5.87ACH (CASE6). In addition, that's a 3.6ACH increased more than CASE1.