• Title/Summary/Keyword: 블랙 카본

Search Result 371, Processing Time 0.028 seconds

Influence of Filler Systems and Microstructures of SBR on Stress Softening Effect of SBR Vulcanizates (SBR의 미세 구조와 보강 시스템이 SBR 가황물의 응력 풀림 효과에 미치는 영향)

  • Choi, Sung-Seen;Han, Dong-Hun;Woo, Chang-Su
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.164-171
    • /
    • 2006
  • Stress softening behaviors of SBR vulcanizates reinforced with silica or carbon black were studied. Two types of SBR with different 1,2-unit contents of 18 and 60 wt% were used and three filler systems of carbon black and silica with/without silane coupling agent were employed. Stress softening behaviors of the SBR vulcanizates were varied with the SBR types as well as the filler systems. The silica-filled rubber specimens had higher residual strains than the carbon black-filled ones. The residual strains of silica-filled vulcanizates were remarkably reduced by adding a silane coupling agent. The maximum loads at 50% maximum stretch of the carbon black-filled vulcanizates were lower than those of the silica-filled ones. On the contrary, the maximum loads at 200% maximum stretch of the carbon black-filled vulcanizates were higher than those of the silica-filled ones. The maximum loads of the specimens with the 1,2-unit content of 60 wt% are higher than those with the 1,2-unit content of 18 wt% irrespective of the filler systems.

An Analysis on the Properties of Concrete Used as the Mixture Material with Carbon Black (카본블랙을 혼화재료로 사용한 콘크리트의 특성 분석)

  • Ryu, Hyun-Gi;Kwon, Yong-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.59-66
    • /
    • 2010
  • The purpose of this study is to determine the possibilities of blending carbon black, which is known for its permeability as well as its strong heat and fire resistance, into concrete, in a manner that reinforces its strengths mentioned above. Experiments show that in non-solidified, fresh-mixed concrete, the addition of carbon black effectively reduced slump level and air content due to its absorptiveness and minute particle size. It also showed good results in terms of coagulation time, penetration resistance and bleeding level. In solid concrete, it showed better strength than plain concrete. Due to the pozzolanic reaction, its strength became more pronounced over time. At approximately 850 degrees Celsius, the heat and fire resistance level increased in parallel to the level of chemical substitution (by carbon black). Drying shrinkage level appeared to be optimal, and environmental assessment test results related to CO, CO2 and formaldehyde also scored better than plain concrete. In summary, with the appropriate use of AE water-reducing agents, carbon black can prove to be a strong candidate as an ingredient for industry-grade concrete.

Accelerated Weathering Behavior of XLPE (가교폴리에틸렌의 촉진 내후성)

  • Lee, Chul Ho;Kim, Sang Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.722-730
    • /
    • 1994
  • The effects of antioxidant and carbon black on weatherability of crosslinked polythylene(XLPE) for electrical insulation were investigated. 16 compositions were prepared in other to determine the weathering resistance. Samples were exposed in xenon-arc lamp Weather-Ometer for 500, 1000, 1500, 2000 hours respectively. Tensile strength, elongation at break, dielectric strength and tan ${\delta}$ were measured to evaluate the weatherability of XLPE. The results indicated that the effect of carbon black was more prominent than antioxidant and synergistic effect, was observed when two additives were mixed.

  • PDF

A Study on the Electrical Resistivity of Graphene Added Carbon Black Composite Electrode with Tensile Strain (인장변형에 따른 그래핀복합 카본블랙전극의 저항변화연구)

  • Lee, T.W.;Lee, H.S.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.55-61
    • /
    • 2015
  • Stretchable electrode materials are focused to apply to flexible device such as e-skin and wearable computer. Used as a flexible electrode, increase in electrical resistance should be minimalized under physical strain as bend, stretch and twist. Carbon black is one of candidates, for it has many advantages of low cost, simple processing, and especially reduction in resistivity with stretching. However electrical conductivity of carbon black is relatively low to be used for electrodes. Instead graphene is one of the promising electronic materials which have great electrical conductivity and flexibility. So it is expected that graphene added carbon black may be proper to be used for stretchable electrode. In this study, under stretching electrical property of graphene added carbon black composite electrode was investigated. Mechanical stretching induced cracks in electrode which means breakage of conductive path. However stretching induced aligned graphene enhanced connectivity of carbon fillers and maintained conductive network. Above all, electronic structure of carbon electrode was changed to conduct electrons effectively under stretching by adding graphene. In conclusion, an addition of graphene gives potential of carbon black composite as a stretchable electrode.

Study on the Pt/C Catalyst Preparation for PAFC's Electrode (PAFC 전극용 카본블랙상 백금촉매 담지에 관한 연구)

  • Kim, Yeong-Woo;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.522-529
    • /
    • 1993
  • To raise the utilization of precious platinum currently used as catalyst for PAFC's electrode, it is very important to make fine particles of platinum. This study, for preparing highly dispersed platinum catalyst on carbon black, method. And then loading yield of platinum catalyst on carbon black and the particle size were investigated by DCP and XRD and/or TEM respectively. The colloid method by which platinum particle size could be reduced as small as below $30{\AA}$ showed the best result among them, and the loading yield of platinum catalyst on carbon black was above 99%.

  • PDF

Electrical Conduction and Resistance Characteristics of Styrene Butadiene Rubber (SBR) Composites Containing Carbon Black (Styrene Butadiene Rubber (SBR)/ Carbon Black 복합체의 전기저항 및 전기전도 특성)

  • Kim, Do-Hyun;Lee, Jung-Hee;Sohn, Ho-Soung;Lee, Kyung-Won
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.246-254
    • /
    • 1998
  • In order to investigate the characteristics of resistance and conduction of vulcanized styrene butadiene rubber (SBR)/ carbon black (CB) composites, surface/ volume resistivity, point to point resistance, decay time, and electrical conduction experiments with four different kinds of non-conductive carbon black were measured. When about 50phr of carbon black were loaded in SBR, all resistivites suddenly decreased and critical region (Rc) was shown. Current densities of SBR/CB composites showed critical point (Pc) and increased with the electric fields. Electrical conduction mechanisms of SBR/CB composites could be considered as the ohmic conduction at low electric fields and the space charge limited conduction (SCLC) at high electric fields, respectively.

  • PDF

Color revelation characteristics of color mortar using iron oxide and carbon black (산화철과 카본블랙을 사용한 컬러 모르터르의 색상발현 특성)

  • Seok, Hwa-Song;Hong, Chang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.156-161
    • /
    • 2020
  • Recently, as there has been growing demand for aesthetic quality in structural materials, the development of excellent color cement concrete having good coloration properties has become a requirement. This study is designed to analyze the basic physical properties of mortar and the properties of keeping the coloration under an ultraviolet ray accelerated weathering test environment according to changes in the mixing ratio between carbon black and iron oxide used as colorants. The test results show that the use of carbon black and iron oxide reduces the initial flow by 6.3~17.2 % and the air content by 3.5~31.5 % but increases the unit volume weight by 3.4~5.5 %, compared to ordinary Portland cement (OPC). In addition, the study shows that the addition of iron oxide increases the self drying shrinkage. So, caution needs to be taken on the workability of the concrete. The brightness value L represented by black showed the most excellent black colour when carbon black 3 % and iron oxide 5 % are added. According to UV accelerated weatherproof test, the brightness value L was found to increase in all experiment specimens by 4.28~11.97 %, and the color change by UV was found to be higher for the case where carbon black colorant was not used. Therefore, in terms of color revelation characteristics, the case using carbon black 3 % and iron oxide 5 % was found to show the best black color.

Dispersion Characteristics of Carbon Black Particles in a High Viscous Simulated Solution (고점성 모사용액 내 Carbon Black 입자의 분산특성)

  • Jeong, Kyung-Chai;Eom, Sung-Ho;Kim, Yeon-Ku;Cho, Moon Sung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.165-170
    • /
    • 2013
  • An external gelation method in place of an internal gelation method applied to the fabrication process of an intermediated compound of Uranium Oxy-Carbide (UCO) kernel spheres for Very High Temperature Reactor (VHTR) fuel preparation is under development in Korea. For the preliminary experiments of the UCO kernel sphere preparation using an external gelation method, the carbon black dispersion experiments were carried out using a simulated broth solution. From the selection experiments of various kinds of carbon black through dispersion experiments in a viscous metal salt solution, Cabot G carbon black was selected owing to its dispersion stability, and the homogeneous dispersing state of carbon black particles in our system. For the effective dispersion of nano-size aggregated carbon black particles in a high viscous liquid, the carbon black particles in a metal salt solution were first de-aggregated with ultrasonic force. The mixed solution was then dispersed secondly by the use of the extremely high-speed agitation with a mechanical mixer of 6000 rpm after feeding the Poly Vinyl Alcohol (PVA) in the solution. This results in the broth solution with good stability and homogeneity alongside no further changes in physical properties.

A Study on the Dielectric Properties of SBS/Conductive Filler/Dielectrics Composites for Phantom Model (팬텀 모델 제작을 위한 SBS/도전체/유전체 3상 복합재료의 유전특성 연구)

  • Kim, Yoon-Jin;Choi, Hyung-Do;Cho, Kwang-Yun;Yoo, Don-Sik;Yoon, Ho-Gyu;Suh, Kwang-Seok
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.98-107
    • /
    • 2001
  • Dielectric properties and shape memory characteristics of SBS composites filled with carbon black as conductive filler and (Ba,Ca)$(Sn,Ti)O_3$ or $SrTiO_3$ as dielectrics were investigated for the development of phantom model. SBS/carbon black composite showed an increment of complex dielectric constant with increasing the content of carbon black and the frequency dependence that the dielectric constant decreases with the frequency. The complex dielectric constant and the conductivity of SBS/carbon black/dielectrics composites increased with the increase of dielectrics and the characteristics of the frequency dependence also occurred by the effect of carbon black. Phantom materials with the dielectric properties and the conductivity corresponding to human tissues for the measurement of specific absorption rate(SAR) within the frequency range of current mobile phones(775MHz~2GHz) could be developed by adjusting the composition ratios of carbon black, dielectrics and SBS and by controlling the characteristic of frequency dependence of composite. From thermomechanical cycling test good shape recoverability could be obtained in SBS composite even though the residual strain was increased by the effect of filler.

  • PDF

Flow Behavior of Polystyrene and Poly(butyl methacrylate) Composite Particles Filled with Varying Concentrations of Carbon Black (다양한 농도의 카본블랙을 함유하는 폴리스티렌 및 폴리뷰틸메타크릴레이트 복합체 입자의 유동성)

  • Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.336-342
    • /
    • 2009
  • We measured shear viscosity of polystyrene (PS) and poly(butyl methacrylate) (PBMA) particles, with a capillary rheometer, prepared by suspension polymerization with 1.0 wt% hydrophobic silica as a stabilizer by varying the initiator concentration at $75^{\circ}C$. PS particles with weight average molecular weight of 66,500 g/mol displayed a Newtonian behaior at low shear rates at $190^{\circ}C$. With increasing molecular weight, PS particles showed shear thinning over the entire range of shear rates. For PBMA particles, steady shear measurement was carried out at $170^{\circ}C$. PBMA particles with weight average molecular weight of 156,700 g/mol showed a Newtonian behaior only at low shear rates. PBMA particles also showed shear thinning with an increase in molecular weight and its pattern similar to that of PS. When carbon black was incorporated into PS and PBMA polymers, steady shear measurement was conducted at $170^{\circ}C$. An increase in carbon black concentration in PS and PBMA composite particles exhibited a progressive increase in shear viscosity. The increase in shear viscosity, however, was less pronounced compared to an increase as a function of molecular weight. Preparing PS composites containing carbon black by internal mixing resulted in an increase in shear viscosity. Its increase, however, was found to be less than that shown in PS composite particles. We speculate that this is caused by an enhanced dispersion of carbon black particles with an internal mixer. Yield behavior was not observed in any of the samples we selected in this experiment.