• 제목/요약/키워드: 브레이크 소음

검색결과 112건 처리시간 0.027초

고속철도KTX(Korea Train Express)의 역구내진입 제동시 브레이크슈 사이의 마찰소음에 관한 연구 (Study on the Squeal Noise Between the Barake Shoes of the High Speed Railway(KTX))

  • 배원식;정인수;이동훈;유원희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.115-122
    • /
    • 2007
  • The noises which occurs from the rolling stock can be divided largely into three classes and they are Rolling noise, Traction noise and Aerodynamic noise. In the event of braking the rolling stock which enter into the station, Brake shoes cause Fraction noise (braking noise) and excessive braking noise makes passengers and operators uncomfortable. This study is to reduce squeal noise and minimize displeasure by measuring the braking noise and defining the major noise sources and noise mechanism

  • PDF

브레이크 디스크의 산질화처리가 부식지연 및 제동특성에 미치는 영향에 관한 연구 (A Study of Effects of Ferritic Nitrocarburized Brake Disc on Its Corrosion Resistance and Braking Performances)

  • 한진;김광윤;이학인;이정주
    • 자동차안전학회지
    • /
    • 제7권2호
    • /
    • pp.19-24
    • /
    • 2015
  • Ferritic Nitro Carburizing (FNC) cast iron brake discs is known to improve corrosion resistance and brake creep groan noise as well as prevent corrosion-induced pulsation. But, it is necessary to treat honing machining on braking surface to avoid grinding noise during braking.

디스크 정렬불량에 기인한 브레이크 스퀼소음 (Brake Squeal Noise Due to Disk Misalignment)

  • 박주표;최연선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1690-1695
    • /
    • 2003
  • In order to investigate the mechanism of brake squeal noise, the sound and vibration of an actua1 brake system were measured using a brake dynamometer. The experimental results show that disc run-out varies with brake line pressure and the factor of squeal generation is the run-out due to the misalignment of brake disk. A three degrees of freedom friction model is developed for the disk brake system where the run-out effect and nonlinear friction characteristic are considered. The results of numerical analysis of the model agree well with the experimental results. Also, the stability analysis of the model was performed to predict the generation of brake squeal due to the design parameter modification of brake systems. The results show that the squeal generation depends on the nm-out rather than the friction characteristic between the pad and the disk of brake.

  • PDF

디스크 브레이크의 마찰면에서 발생되는 스퀼소음에 관한 실험적 연구 (An Experimental Study on the Squeal Noise Generated in Friction Surface of Disk Brake)

  • 이해철;이원평;차경옥
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.26-31
    • /
    • 2000
  • There are various noises generated by friction. Among the rest, eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. The parameters affecting brake squeal noise are the material properties of the braking pad, the dynamic properties of the brake parts and the dimensions of the brake assembly etc. Also, the squeal noise changes its inherent form with the normal load and sliding speed. In this study, the characteristics of brake squeal noise generated by friction is analyzed experimentally. The experiment focused on the analysis of friction self-excited vibration and squeal noise level. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding speeds. And Friction self-excited vibration is raised the brake squeal noise.

  • PDF

전동차 브레이크 스퀼소음 현상 및 개선에 대한 연구 (Study on the break squeal noise of rolling stock on tracks and improvements for reducing squeal noise)

  • 정수영;김성걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.170-175
    • /
    • 2005
  • In this study, experimental and theoretical methods were applied to understand brake squeal noise VVVF rolling stock on tracks. Trailer cars needed to payed a particular attention, because they were the major source of brake noise. VVVF rolling stocks for lines no 1 of the subway system in Seoul were used for experimental analyses. In order to study brake squeal noise, a dynamometer test at the S&T Brake, Co., which was a manufacturer of brake pads had performed. For measuring vibration and noise, vibration tests of brake parts (brake lining, brake lining head, back plates, etc.) at the SNUT were executed. Also, vibration tests of disc assembly and lining block at the heavy maintenance shop of the Gunja depot were performed. The modal analyses by using an ANSYS which was one of the CAE commercial program were simulated to know the relationship to the mechanism of brake noise. On the based of the tests and the simulations it was found that specific frequencies of the brake parts affected squeal noise, and improvements for reducing squeal noise were proposed.

  • PDF

제동시 발생하는 리어 드럼브레이크 Grunt(stick-slip) Noise 개선 (Rear Drum Brake Grunt(stick-slip) Noise Improvement on Braking During Nose-dive & Return Condition)

  • 홍일민;장명훈;김선호;최홍석
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.781-788
    • /
    • 2013
  • Grunt(stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1 kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

자동차 제어장치의 져더 진동 측정 및 진단 방법 (Test and Diagnostics Methods for Judder Vibration of the Brake System)

  • 강태원;임상규
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.613-620
    • /
    • 1999
  • 디스크 두께 변화(DTV)에 의해 야기되는 져더현상은 일반적으로 차체진동, 브레이크 페달 떨림, 그리고 스티어링 휠의 떨림에 의해 감지된다. 이번 연구에서는, 차수분석 및 Operational Vibration Analysis(OVA)를 통해 차체진동이 DTV profile에 의해 어떻게 영향을 받는지를 중점적으로 조사하였다. 진동 측정위치는 knuckle, lower arm, lower arm 연결 차체부위이고, 져더 발생 DTV profile도 실측하였다. 시험 분석 결과, DTV는 져더현상에 차수별 상대적인 방향 기여도를 나타내며 특히 디스크 회전 2차 성분은 차량진행 방향으로의 lower arm 진동을 현저하게 야기시키는 것으로 나타났다. 이러한 시험 및 분석 기술은 져더 현상을 진단하고 문제를 개선하는데 유효하리라고 예측된다.

  • PDF

제동시 발생하는 리어 드럼브레이크 grunt (stick-slip) noise 개선 (Rear drum brake grunt (stick-slip) noise improvement on braking during nose-dive & return condition)

  • 홍일민;장명훈;김선호;최홍석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.743-749
    • /
    • 2012
  • Grunt (Stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

  • PDF

2자유도 모텔을 이용한 디스크 브레이크의 면외 운동에 미치는 접촉강성의 영향 분석 (Analysis of the Effect of Contact Stiffness on the Out-of-plane Motion of a Disc Brake System using 2-DOE Model)

  • 신기홍;조용구;차병규;오재응
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.160-167
    • /
    • 2004
  • A two degree-of-freedom mathematical model is presented to investigate the friction mechanism of a disc brake system. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The model with the contact parameter is considered under the assumption that the out-of-plane motion depends on the friction force along the in-plane motion. In order to describe the relationship between the friction force and the out-of plane motion, the dynamic friction coefficient is considered as a function of both relative velocity and normal farce. Using this friction law, a contact stiffness matrix along the normal direction can be obtained. The out-of-plane motion is then investigated by both the stability analysis and the numerical analysis for various parametric conditions. The results show that the stiffness parameters of the pad and the disc must be controlled at the same time. Also, the numerical analysis shows the existence of limit cycle caused by the effect of intermittent contact stiffness.

전동차 브레이크 스퀼 소음 현상에 대한 연구 (Study on the phenomena of brake squeal noise in rail vehicle)

  • 양용준;김성걸;박영일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.405-410
    • /
    • 2004
  • There are two types of noises in running the rail vehicle. The one is periodic by electric motors, dehumidifiers, and dusting machines. And the other is aperiodic squeal noise by the frictions between the wheels and the rail or the disks and pads. The periodic noises in rail vehicle have been reduced by changing DC motors to AC motors with silencers, and by improving the lubricants. However, almost nothing relating a periodic noise has been studied. In this paper, the experimental methods were applied to understand phenomena of the squeal noise, which was occurred by the friction variation due to aperiodic stick and slip with low repeatability in the process of dry friction of the disk and the pad when a rail vehicle was being braked. By the experimental acoustic test, it was found the specific frequencies relating the squeal noise. And by modal testing, it was measured the resonant frequencies in the disk and the pad-plate which were the components of the braking system, and in the whole braking system, and it was found the specific frequencies having the effects on the squeal noise.

  • PDF