• Title/Summary/Keyword: 붕소/질산칼륨

Search Result 3, Processing Time 0.018 seconds

Thermal Decomposition Behavior of Boron-Potassium Nitrate (BKNO3) by TGA (열중량분석법에 의한 Boron-Potassium Nitrate(BKNO3)의 열분해 특성 연구)

  • Go, Cheongah;Kim, Junhyung;Park, Youngchul;Moon, Youngtaek;Seo, Taeseok;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.104-110
    • /
    • 2019
  • The thermal decomposition characteristics of boron-potassium nitrate ($BKNO_3$) were investigated by non-isothermal thermal gravimetric analysis (TGA). Two steps of mass loss were observed in the temperature range between room temperature and $600^{\circ}C$. Kinetic parameters of the thermal decompositions were evaluated from the measured TGA curves using the AKTS Thermokinetics Software. For the first step of mass loss ($220-360^{\circ}C$) corresponding to the thermal decomposition process of the binder (Laminac/Lupersol), the activation energy is in the range of approximately 120-270 kJ/mol when evaluated by Friedman's iso-conversional method, while the value of activation energy varies in the range of approximately 150-400 kJ/mol during the second step process ($360-550^{\circ}C$).

Combustion Modeling of Explosive for Pyrotechnic Initiator (파이로테크닉 착화기 화약 연소 모델링)

  • Cha, Seung-Won;Woo, Jeongmin;Kim, Yong-chan;Oh, Seok-Hwan;Cho, Jin Yeon;Kim, Jeong Ho;Jang, Seung-gyo;Yang, Hee Won;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.39-48
    • /
    • 2017
  • In this study, combustion modeling of ZPP and $BKNO_3$ mainly used in the PMD industries has been performed. Saint Robert's law, energy conservation equation, and the Noble-Abel equation of the state have been used for governing equations. The results of pressure obtained from established combustion models and actual CBT have been compared. In the case of ZPP, the model has predicted a pressure curve similar to that of the experimental results, but $BKNO_3$ has showed that the maximum pressure of the model is greater than the experiment at small chamber volume. For these gaps, the probability of $BKNO_3$ unburning has been considered.

Kinetic Analysis of Energetic Materials Using Differential Scanning Calorimetry (DSC를 이용한 고에너지 물질의 반응속도식 추출과 활용)

  • Kim, Yoocheon;Park, Jungsoo;Yang, Seungho;Park, Honglae;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • The kinetic analysis of energetic materials using Differential Scanning Calorimetry (DSC) is proposed. Friedman Isoconversional method is applied to DSC experiment data and AKTS software is used for analysis. The proposed kinetic scheme has considerable advantage over the standard method based on One-Dimenaionl Time to Explosion (ODTX). Reaction rate and product mass fraction simulation are conducted to validate extracted kinetic scheme. Also a slow cook-off simulation is implemented on $B/KNO_3$ for validating the applicability of the extracted kinetics scheme to a practical thermal experiment.