• Title/Summary/Keyword: 붕괴 사면

Search Result 414, Processing Time 0.031 seconds

Analysis on Displacement Characteristics of Slow-Moving Landslide on a slope near road Using the Topographic Map and Airborne LiDAR (수치지형도와 항공 LiDAR를 이용한 도로인접 사면 땅밀림 발생지 변위 특성 분석)

  • Seo, Jun-Pyo;Kim, Ki-Dae;Woo, Choong-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.27-35
    • /
    • 2019
  • The purpose of this study is to analyze the displacement characteristics in slow-moving landslide area using digital elevation model and airborne LiDAR when unpredictable disaster such as slow-moving landslide occurred. We also aimed to provide basic data for establishing a rapid, reasonable and effective restoration plan. In this study, slow-moving landslide occurrence cracks were selected through the airborne LiDAR data, and the topographic changes and the scale of occurrence were quantitatively analyzed. As a result of the analysis, the study area showed horseshoe shape similar to the general form of slow-moving landslide occurrence in Korea, and the direction of movement was in the north direction. The total area of slow-moving landslide damage was estimated to about 2.5ha, length of landsldie scrap 327.3m, average width 19.3m, and average depth 8.6m. The slow-moving landslides did not occur on a large scale but occurred on the adjacent slope where roads were located, caused damage to retaining walls and roads. The field survey of slow-moving landslides was limited by accessibility and safety issues, but there was an advantage that accurate analysis was possible through the airborne LiDAR. However, because airborne LiDAR has costly disadvantages, it has proposed a technique to mount LiDAR on UAV for rapidity, long-term monitoring. In a slow-moving landslide damage area, information such as direction of movement of cracks and change of scale should be acquired continuously to be used in restoration planning and prevention of damage.

Evaluating the Influence of Post-Earthquake Rainfall on Landslide Susceptibility through Soil Physical Properties Changes (지진이후 강우의 산사태 발생 영향성 평가를 위한 토양물성값 변화 분석)

  • Junpyo Seo;Song Eu;KiHwan Lee;Giha Lee;Sewook Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.270-283
    • /
    • 2024
  • Purpose: Considering the rising frequency of earthquakes in Korea, it is crucial to revise the rainfall thresholds for landslide triggering following earthquake events. This study was conducted to provide scientific justification and preliminary data for adjusting rainfall thresholds for landslide early warnings after earthquakes through soil physical experiments. Method: The study analyzed the change in soil shear strength by direct shear tests on disturbed and undisturbed samples collected from cut slopes. Also, The study analyzed the soil strength parameters of remolded soil samples subjected to drying and wetting conditions, focusing on the relationship between the degree of saturation after submergence and the strength parameters. Result: Compaction water content variation in direct shear tests showed that higher water content and saturation in disturbed samples led to a significant decrease in cohesion (over 50%) and a reduction in shear resistance angle (1~2°). Additionally, during the ring shear tests, the shear strength was observed to gradually decrease once water was supplied to the shear plane. The maximum shear strength decreased by approximately 65-75%, while the residual shear strength decreased by approximately 53-60%. Conclusion: Seismic activity amplifies landslide risk during subsequent rainfall, necessitating proactive mitigation strategies in earthquake-prone areas. This research is anticipated to provide scientific justification and preliminary data for reducing the rainfall threshold for landslide initiation in earthquake-susceptible regions.

Study on Modeling Procedure of Hydraulic Experiment of Coastal Structure Scour at Sea-Bed Using Fluid-structure Interaction (유체-구조 상호작용을 고려한 해안구조물의 해저면 세굴에 대한 조파실험 해석 기법 연구)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.49-53
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

Behaviour of geogrid reinforced model retaining wall in active failure state by execution of parallel movement (병진이동으로 인한 주동파괴 시 지오그리드 보강토 모델벽체의 거동)

  • Lee, Kang-Man;Kong, Suk-Min;Lee, Dae-Young;Lee, Yong-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.117-127
    • /
    • 2015
  • Recently, there has been a string of negligent accidents for the retaining wall and slope. In order to measure the ground deformation for the MSE wall, the authors carried out the model test to assess behavioral characteristics of geogrid MSE walls in active failure state with different conditions of geogrid reinforcement. The models are built in the soil container box having dimension, 100 cm long, 90 cm height, and 10 cm wide. The reinforcement used in the model test is geogrid (polyvinyl chloride, PVC). Three geogrids are sized by $30cm{\times}60cm$, $30cm{\times}70cm$, $30cm{\times}80cm$ (width ${\times}$ length) respectively. In this study, the laboratory model tests represented for several conditions of the MSE wall, and then its results were compared to 2D FE analysis.

Development of Horizontal Displacement Sensor for Rainfall-simulated Centrifugal Model Test (강우재현 원심모형실험에 적용하기 위한 수평변위 계측장치의 개발)

  • Lee, Chungwon;Park, Sungyong;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.71-77
    • /
    • 2014
  • Heavy rainfall induces many disasters including slope failure and infrastructure collapse. In this point of view, rainfall-simulated centrifugal model test can be a reasonable tool to evaluate the stability of geotechnical structure. In order to obtain the displacements of a model in centrifugal model test, in general, LVDT and laser displacement sensor are used. However, when the rainfall is simulated, the LVDT has the problem of excessive infiltration into the model ground, and the laser displacement sensor provides the measuring result with inaccuracy due to the dispersion of the laser radiation. Hence, in this study, horizontal displacement sensor for rainfall-simulated centrifugal model test was developed. This sensor produced with a thin elastic steel plate and gave the accurate relationship between the displacement and the strain.

Investigation of Behaviours of Wall and Adjacent Ground Considering Shape of Geosynthetic Retaining Wall (보강토 옹벽의 형상을 고려한 벽체 및 인접지반 거동 연구)

  • Lee, Jong-Hyun;Oh, Dong-Wook;Kong, Suk-Min;Jung, Hyuk-Sang;Lee, Yong-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.95-109
    • /
    • 2018
  • Recently, GRS (Geosynthetic Retaining Segmental) wall has been widely used as a method to replace concrete retaining wall because of its excellent structural stability and economic efficiency. It has been variously applied for foundation, slope, road as well as retaining wall. The GRS wall system, however, has a weak point that is serious crack of wall due to stress concentration at curved part of it. In this study, therefore, behaviour of GRS wall according to shape of it, shich has convex and concave, are analysed and compared using Finite Element analysis as the fundamental study for design optimization. Results including lateral deflection, settlements of ground surface and wall obtained from 2D FE analysis are compared between straight and curved parts from 3D FE analysis.

Numerical Analysis and Comparison of the Influence of Safety Factor Variations in Slope Stability During Rainy Season (우기시 비탈면 안전율 변화 인자의 영향에 대한 수치해석적 비교연구)

  • Song, Pyung-Hyun;Baek, Yong;You, Byung-Ok;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.45-54
    • /
    • 2014
  • Many studies have been made on investigation, design, explanation and treatments etc. to minimize slope failure. However, the problem is that failures of cutting slope and natural slope due to Typhoon and localized heavy rainfall are still not reduced. It is difficult to treat the problem by only strengthening the design standard. And it is very necessary to carry out design and safety analysis under the most suitable conditions considering foundation and rainfall characteristics. In this study, variations of safety factor were discussed from different aspects to investigate the influence of different parameters of rainfall and analysis conditions. Rainfall and foundation conditions are supposed to be the most sensitive parameters to slope stability, and numerical analysis were performed by changing parameters of the two conditions. Rainfall behavior is based on the domestic statistical rainfall and foundation condition is selected as unsaturated soils. Study results show that, application of rainfall characteristics in different area and parameters of unsaturated soils are responding sensitively to variations of slope safety. Therefore, the input parameters should be fully examined when performing the practical design.

Preference Analysis between Two Administrator Groups on Forest Road Facilities (임도시설에 관한 관리자 집단 간의 의식성향 분석)

  • Ji, Byoung Yun;Kweon, Hyeong-keun;Hwang, Jin Seong;Jung, Do Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.449-455
    • /
    • 2016
  • This study was conducted to provide the basic policy information for systematic forest road planning and maintenance management by surveying two different administrator groups. The survey results showed that the high priorities of forest road planning were silviculture, disaster prevention, and timber harvesting, and main forest road type was preferred for future use. Also 92.9% of the respondents expressed difficulties due to insufficient manpower and budget. The expected damage types due to forest road construction were threat-to-life by slope failure and dispute on crossing private land. The current main maintenance tasks on forest roads included drainage and road surface maintenance works. Main forest road facilities that should be needed after the construction were installation of additional drainage structures, and slope revegetation and stabilization.

A Stability Design of Riprap for Revetment Structures Remodeling in the West Coast Area (서해 연안 호안구조물 리모델링을 위한 사석재의 안정설계)

  • Yu, In-Sang;Park, Jong-Ryul;Oh, Kuk-Ryul;Kim, Kee-Dong;Jeong, Sang-Man
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.28-31
    • /
    • 2010
  • 충청남도 서해안은 생태환경의 보고로서 갯벌, 사구, 해안습지 등 독특한 자연적 특성을 갖고 있는 지역이다. 그러나 다른 지역에 비해 대규모 간척 및 매립으로 인한 해양생태계 피해에 현저히 노출되어 있고, 최근 산업화 및 관광권화가 진행되고 있으며 해안선 침식 방지를 위한 연안정비사업으로 각종 연안 방호구조물이 건설되었다. 이 중 가장 많이 건설된 연안 호안구조물은 배후지역의 안정성 확보, 해안도로의 건설 등 다양한 목적으로 축조되었다. 그러나 성장위주의 경제정책으로 연안 호안구조물이 무분별하게 설치되어 파도와 호안 구조물의 접촉 시 호안구조물이 파랑을 견디지 못해 사면피복재가 산란되어 외관상 주변 환경을 해칠 뿐만아니라 2차 피해까지 야기 시킬 우려가 있다. 본 연구에서는 호안구조물의 리모델링을 통해 안정성을 증대시키기 위해 서해 연안지역의 4개 시 군 29개 지점을 대상으로 호안구조물 현황에 대해 조사하고 호안구조물의 리모델링을 통해 붕괴된 지역을 대상으로 파랑에 대해 안정한 사석재 소요질량을 호안구조물의 경사 별로 산정하여 비교하였다. 피복재 소요질량 산정을 위한 설계파고는 유의파고를 적용하였으며, 산정공식은 허드슨공식(Hudson, 1959)을 사용하였다. 추가적으로 사석 층의 두께와 단위면적당 수용해야할 사석재의 개수를 산정하여 호안구조물 설계 시 사석재의 배치를 용이하게 할 수 있도록 하였다. 본 연구에서 산정된 값들은 초기설계로서 파랑에 안정한 호안구조물의 설계 조건 중 일부분으로 호안구조물의 최종 설계 시 조파실험을 통하여 안정성을 검증 해야 할 것으로 판단된다.

  • PDF

Analyzing the Disaster Vulnerability of Mt. Baekdusan Area Using Terrain Factors (지형 요소를 고려한 백두산 지역의 위험도 분석)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol;Lee, Kyu-Hwan;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.605-614
    • /
    • 2013
  • Most steep slope failures tend to take place in geographically unstable areas. Mt. Baekdusan is known as a potentially active volcano in a typical mountainous terrain. This study prepared a digital elevation model of Mt. Baekdusan area and created a hazard map based on topographical factors and structural lineament analysis. Factors used in vulnerability analysis included geographical data involving aspect and slope distribution, as well as contributory area of upslope, tangential gradient curvature, profile gradient curvature, and the distribution of wetness index among the elements that comprise topography. In addition, the stability analysis was conducted based on the lineament intensity map. Concerning the disaster vulnerability of Mt. Baekdusan region, the south and south west area of Mt. Baekdusan has a highest risk of disaster (grade 4-5) while the risk level decreases in the north eastern region.