• Title/Summary/Keyword: 붕괴방지

Search Result 238, Processing Time 0.027 seconds

An Experimental Study on Overflow and Internal Erosion Protection Technology of a Reservoir (저수지 제체월류 및 내부침식 보호기술 모형실험 연구)

  • Jin, Ji-Huan;Lee, Tae-Ho;Yoo, Jeon-Yong;Im, Eun-Sang;Lee, Seung-Joo;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.181-191
    • /
    • 2019
  • Most of the reservoirs in South Korea are fill dam, and overflow and piping phenomena have been detected as the main causes of failure of fill dam. In this study, an operating ◯◯ reservoir located in Gongju-si is modeled in centrifuge model test to study the behavior of reservoir during water level rise and overflow conditions. In order to simulate seepage and overflow in the real reservoir, the model was constructed in 1/50 scale, and deteriorated and reinforced conduits were installed. After modeling the reinforced and deteriorated conditions of the conduits, LVDTs, pore pressure gauges were installed and centrifuge model tests were carried out with water level rise and overflow conditions in order to analyze the reservoir behavior according to the reinforcement methods. The results of centrifuge model test in water level rise condition show that deteriorated conduit has adverse effects in the stability of the reservoir body, and the conduit which is reinforced by the inverse lining method has enhanced stability of the reservoir body. Moreover, installation of water spillway is seen to prevent the scour and erosion of the reservoir body. The study provides a basic data required for the reinforcement of conduit and water spillway in the reservoir.

Evaluation of Erosion Resistance Capability with Adhesive Soil Seeding Media (접착성 식생기반재의 침식저항능력 평가)

  • Seong, Si-Yung;Shin, Eun-Cheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.71-79
    • /
    • 2015
  • This paper describes vegetation based soil-media hydroseeding measures that have been previously applied as slope revegetation methods show problems such as insufficient binding force, drying, and insufficient organic matter. In particular, in the case of slope faces in regions where scattering is severe, a vicious circle exists in which remarkably low vegetation cover rates and increases in withering rates over time lead to further decreases in vegetation cover rates, which lead to further increases in erosion and scattering. Therefore, in the present study, environment friendly soil stabilizers were applied for resistance against erosion or scattering and engineering evaluations such as long-term immersion tests and flow resistance tests were conducted to determine appropriate mixing ratios. According to the results of long-term immersion tests utilizing environment friendly soil stabilizers and existing greening soil based materials, 100% collapse occurred at 30 hours and 40 days in the case of soil stabilizer mixing ratios of 0% and 2%, respectively. While the original form of the samples remained intact until the experiment was completed in the case of mixing ratios exceeding 4% indicating that 2% or higher soil stabilizer mixing ratios could affect the maintenance of forms even under extreme conditions. In addition, artificial rainfall tests were conducted on 40, 45, and 55 degree slope faces to evaluate the structural stability of vegetation based materials. Flow resistance tests were conducted on soil stabilizer mixing ratios of 0, 4, 8% to evaluate erosion resistance capability. Based on the results of the tests, environment friendly soil stabilizers applied for prevention of scattering or resistance against erosion by rainwater are considered to provide large effects to reduce losses and loss rates showed a tendency of decreasing rapidly when soil stabilizers were mixed.

Evaluation of Minimum Depth Criterion and Reinforcement Effect of the Soil Cover in a Long-span Soil-steel Bridge (장지간 지중강판구조물의 최소토피고 평가 및 토피지반 보강에 대한 수치해석)

  • 이종구;조성민;정현식;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.67-78
    • /
    • 2004
  • Soil-steel bridges are made of flexible corrugated steel plates buried in the well-compacted granular soil. One kind of possible collapses of these structures could be initiated by shear or tension failure in the soil cover subjected to vehicle loads. Current design codes provide the requirements for the minimum depth of the soil cover to avoid problems associated with soil cover failures. However, these requirements were developed for short span (less than 7.7 m) structures which are made of unstiffened plates of standard corrugation (150$\times$50 m). Numerical analyses were carried out to investigate the behavior of long span soil steel bridges according to thickness of the soil cover. The span of structures were up to 20 m and deep corrugated plates (381$\times$140 m) were used. The analysis showed that the minimum cover depth of 1.5 m could be sufficient to prevent the soil cover failure in the structures with a span exceeding 10 m. Additional analyses were performed to verify the reinforcement effect of the concrete relieving slab which can be a special feature to reduce the live-load effects. Analyses revealed that the bending moment of the conduit wall with a relieving slab was less than 20% of that without a relieving slab in a case of shallow soil cover conditions.

Elasto-Magnetic Sensor-Based Local Cross-Sectional Damage Detection for Steel Cables (Elasto-Magnetic 센서를 이용한 강재 케이블 국부 단면 감소 손상 탐지)

  • Kim, Ju-Won;Nam, Min-Jun;Park, Seung-Hee;Lee, Jong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The Elasto-magnetic sensor is applied to detect the local cross-sectional loss of steel cables in this study while it was originally developed for measuring the tensile force in the previous works. To verify the feasibility of the proposed damage detection technique, steel bars which have 4-different diameters were fabricated and the output voltage value was measured at each diameter by the E/M sensor. Optimal input voltage and working point are chosen so that the linearity and resolution of results can ensure through repeated experiments, and then the E/M sensor was measured the output voltage values at the damage points of steel bar specimen that was applied the 4 types of damage condition based on the selected optimal experimental condition. This proposed approach can be an effective tool for steel cable health monitoring.

A proposal of simple evaluation on the seismic performance of tunnel lining (터널 라이닝의 내진성능 간편 평가법 제안)

  • Ahn, Jae-Kwang;Byun, Yoseph;Lee, Gyuphil;Lee, Seongwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.361-374
    • /
    • 2018
  • The country has built and is operating IT-based integrated management system for efficient management of national highway tunnels used publicly these days. Since this system doesn't include the management function on earthquakes, it is impossible to promptly respond to earthquakes and to select the sections requiring seismic reinforcement. Tunnels designed and constructed after 1999 have been subjected to seismic design for an earthquake with a return period 1000 years. Therefore, it is necessary to evaluate the stability of structures in case of earthquakes more than this. Since it takes a lot of time to perform the stability evaluation on various earthquake magnitudes, a method that can easily evaluate earthquakes is needed. In this paper, the empirical simplification method that can easily evaluate the earthquake was proposed. For this, the study calculated ground displacement by conducting one-dimensional ground response analysis, and examined the safety of tunnels in the event of occurrence of an earthquake using two means of response displacement method (analytics and numerical analysis).

Verification of Applicability of Emergency Recovery Scenario Applying Field Recovery Case (현장복구사례를 이용한 긴급복구 시나리오의 적용성 검증)

  • Yoon, Hyuk-Jin;Jung, Jae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.632-638
    • /
    • 2018
  • Recently, damage to waterside structures, such as bridges or retaining walls, is increasing due to typhoons, flooding, aging, etc. In such cases, the damage is not limited to the structures themselves, but can include effects on a wider scale, such as the suspension of and restriction of access to the facilities, human injury, economic loss, etc. To preclude such damage, recovery methods suitable for the particular field circumstances should be applied when damage occurs. By enforcing prompt repairs, the material and human damage and losses that can occur can be minimized. Since the impact of losses caused by damage and disaster increases with the elapse of time, emergency recovery is even more important. In the emergency recovery process, appropriate repair and reinforcement is crucial. In the present study, the derivation scenarios of the emergency recovery method were applied to some field recovery cases, and their applicability was verified by comparison with the recovery methods actually used. It is expected that the results of this study will be useful for practical application, by suggesting more appropriate recovery methods.

Comparative Study of Machine learning Techniques for Spammer Detection in Social Bookmarking Systems (소셜 복마킹 시스템의 스패머 탐지를 위한 기계학습 기술의 성능 비교)

  • Kim, Chan-Ju;Hwang, Kyu-Baek
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.345-349
    • /
    • 2009
  • Social bookmarking systems are a typical web 2.0 service based on folksonomy, providing the platform for storing and sharing bookmarking information. Spammers in social bookmarking systems denote the users who abuse the system for their own interests in an improper way. They can make the entire resources in social bookmarking systems useless by posting lots of wrong information. Hence, it is important to detect spammers as early as possible and protect social bookmarking systems from their attack. In this paper, we applied a diverse set of machine learning approaches, i.e., decision tables, decision trees (ID3), $na{\ddot{i}}ve$ Bayes classifiers, TAN (tree-augment $na{\ddot{i}}ve$ Bayes) classifiers, and artificial neural networks to this task. In our experiments, $na{\ddot{i}}ve$ Bayes classifiers performed significantly better than other methods with respect to the AUC (area under the ROC curve) score as veil as the model building time. Plausible explanations for this result are as follows. First, $na{\ddot{i}}ve$> Bayes classifiers art known to usually perform better than decision trees in terms of the AUC score. Second, the spammer detection problem in our experiments is likely to be linearly separable.

Dynamic-stability Evaluation of Unsaturated Road Embankments with Different Water Contents (함수비에 따른 불포화 도로성토의 동적 안정성 평가)

  • Lee, Chung-Won;Higo, Yosuke;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.5-21
    • /
    • 2014
  • It has been pointed out that the collapses of unsaturated road embankments caused by earthquake are attributed to high water content caused by the seepage of the underground water and/or the rainfall infiltration. Hence, it is important to study influences of water content on the dynamic stability and deformation mode of unsaturated road embankments for development of a proper design scheme including an effective reinforcement to prevent severe damage. This study demonstrates dynamic centrifugal model tests with different water contents to investigate the effect of water content on deformation and failure behaviors of unsaturated road embankments. Based on the measurement of displacement, the pore water pressure and the acceleration during dynamic loading, dynamic behavior of the unsaturated road embankments with about optimum water content and the higher water content than the optimum one have been examined. In addition, an image analysis has revealed the displacement field and the distributions of strains in the road embankment, by which deformation mode of the road embankment with higher water content has been clarified. It has been confirmed that in the case of higher water content the settlement of the crown is large mainly owing to the volume compression underneath the crown, while the small confining pressure at the toe and near the slope surface induces large shear deformation with volume expansion.

Behavior of Fire Resistance Engineered Cementitious Composites(FR-ECC) under Fire Temperature (화재 온도를 받는 고인성.고내화성 시멘트 복합체의 거동)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.189-197
    • /
    • 2007
  • Concrete tunnel lining must be designed to having the fireproof performance because the lining are sometimes exposed to very high temperature due to traffic accident. Such fire temperature may cause explosion of concrete, or collapse of tunnel structure. The purpose of this study is to obtain the fundamental fireproof behavior of fire resistance-engineered cementitious composites(FR-ECC) under fire temperature in order to use the fire protection material in tunnel lining system. The present study conducted the experiment to simulate fire temperature by employing 2 types of FR-ECC and investigated experimentally the explosion and cracks in heated surface of these FR-ECC. Employed temperature curve were hydro carbon(HC, ECl) criterion, which are severe in various criterion of fire temperature. The numerical analysis is carried out the nonlinear transient heat flow analysis and verified against the experimental data. The complex features of behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. By the use of analytical model, the concrete tunnel subjected to fire loads were analyzed and discussed. With comparison of current concrete materials and FR-ECC, the experimental and analytical results of FR-ECC shows the better fire resistance performance than the other.

Highly Linear 1 W Power Amplifier MMIC for the 900 MHz Band Using InGaP/GaAs HBT (InGaP/GaAs HBT를 이용한 900 MHz 대역 1 W급 고선형 전력 증폭기 MMIC 설계)

  • Joo, So-Yeon;Han, Su-Yeon;Song, Min-Geun;Kim, Hyung-Chul;Kim, Min-Su;Noh, Sang-Youn;Yoo, Hyung-Mo;Yang, Youn-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.897-903
    • /
    • 2011
  • This paper presents a highly linear power amplifier MMIC, having an output power level of about 1 watt, based on InGaP/GaAs hetero-junction bipolar transistor(HBT) technology for the 900 MHz band. The active bias circuit is applied to minimize the effect of temperature variation. Ballast resistors are optimized to prevent a current collapse and a thermal runaway. The fabricated power amplifier exhibited a gain of 17.6 dB, an output P1dB of 30 dBm, and a PAE of 44.9 % at an output P1dB from the one-tone excitation. It also showed a very high OIP3 of 47.3 dBm at an average output power of 20 dBm from the two-tone excitation.