• Title/Summary/Keyword: 불확실성 추정

Search Result 677, Processing Time 0.031 seconds

A Study on the Uncertainty of Radar Rainfall Estimation (레이더 강우추정의 불확실성에 대한 고찰)

  • Noh, Huiseong;Lee, Dong-ryul;Jang, Bong-joo;Han, Myeong-sun;Hwang, Seok Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.220-220
    • /
    • 2016
  • 최근 국지적 기상변화에 따른 도시 산악지역의 돌발홍수 발생빈도가 증가함에 따라 위험기상 관측 및 홍수의 사전감지 대응에 대한 관심과 필요성이 증대되고 있다. 이에 발맞춰 국토교통부 및 기상청 등에서는 이중편파레이더를 설치 운영 중에 있으며, 이를 이용한 정량적 레이더강수량 추정 및 예측에 대한 연구가 활발히 진행 중이다. 레이더를 이용한 정량적 강우추정을 위해서는 레이더관측, 신호처리, 품질관리(QC), 강우추정 알고리즘 적용, 보정 등 일련의 과정을 거치게 되며, 이러한 과정 속에서 다양한 불확실성 요소가 존재하기 때문에 레이더자료의 정확도에 대한 평가가 요구되고 있다. 그러나 레이더강우량의 불확실성이 어느 정도 수준인지 정량적으로 제시하기는 어려우며, 그 기준 또한 모호하다. 따라서, 본 연구에서는 총 25개 강우사상(2012 ~ 2014년)을 대상으로 비슬산강우레이더 관측자료와 관측영역 내 지상강우자료를 이용하여, 누적강우량, 평균차, 상대분산, 변동계수 등을 통해 레이더강우의 정량적인 불확실성을 요약 제시하고자 하였다. 본 연구는 레이더강우의 정량적인 불확실성을 파악할 수 있는 기초적인 과정이며, 도출된 연구결과는 현재 레이더강우 추정의 수준을 파악하고 추후 레이더강우의 개선 수준을 비교 검토 할 수 있는 자료로 활용이 가능할 것으로 판단된다.

  • PDF

An Empirical Investigation of Contingent Valuation Method with Preference Uncertainty (선호 불확실성을 고려한 조건부가치측정법의 고찰)

  • Chang, Jeong-In;Yoo, Seung-Hoon;Kwak, Seung-Jun
    • Environmental and Resource Economics Review
    • /
    • v.14 no.1
    • /
    • pp.75-100
    • /
    • 2005
  • This study attempts to empirically investigate the respondents' preference uncertainty involved in stating their willingness to pay (WTP). In the contingent valuation (CV) survey, we employed two approaches using two split samples. The respondents of one sample were given the opportunity to express intensity of preference through polychotomous choice (PC) WTP question. Those of the other sample were given a follow-up question of confidence measure (0~100%). By incorporating the two elicited degrees of preference uncertainty into examining the WTP responses, we take a comparison of the two approaches in terms of the goodness-of-fit of the examination and the efficiency of the mean WTP estimates. In comparing the DC model with the PC models, the DC model provides more efficient estimates. Moreover, the conventional DC model give some gains in terms of the goodness-of-fit and efficiency in comparing with the PC model most similar to this model. In this specific study, incorporating the preference uncertainty in DC model results greater estimates than conventional DC model without loss of goodness-of-fit and efficiency. This implies that the consideration of preference uncertainty on DC model could correct underestimating. We conclude that DC model provides a better estimate of WTP and preference uncertainty could be a critical information on the DC-CV estimation.

  • PDF

Evaluation of Parameter Estimation Methods Using Uncertainty Analysis of Rainfall-Frequency Curves (강우-빈도 곡선의 불확실성 분석을 이용한 매개변수 추정법의 평가)

  • Han, Jeong-Woo;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1272-1276
    • /
    • 2009
  • 극치강우사상에 의한 설계 홍수량의 갑작스런 증 감은 홍수, 가뭄과 같은 기상학적 요인에 기인한 재난을 발생시킨다. 많은 연구자들은 보다 정확한 확률강우량의 예측과 유출량의 예측을 위해 많은 노력을 하고 있다. 본 연구에서는 강원도 강릉 강우관측소를 대상으로 강우-빈도곡선의 불확실성 분석을 수행하였다. 관측 자료의 수집에서 발생하는 불확실성을 최소화 하고자 ARMA 모형을 이용하여 합성강우자료를 구축하였으며, 발생된 합성강우량을 Bootstrap 방법을 이용하여 대규모의 자료집단으로 발생시킴으로서 신뢰구간에 사용할 자료집단을 발생시켰다. 본 연구에서는 극치강우사상에 적합한 것으로 알려진 Gumbel 분포와 일반극치 분포(GEV 분포) 모형을 선정하였으며 각 확률분포모형에 대한 매개변수 추정방법으로 최우도법, 확률가중모멘트법 그리고 베이지안 추론방법을 사용하여 각 매개변수의 최후 추정치를 산정하였다. 또한 원 자료를 이용하여 최우도법, 확률가중모멘트법 그리고 베이지안 추론방법을 통해 매개변수를 산정 후 강우-빈도 곡선을 추정하여 합성강우자료의 Bootstrap 방법에 의해 발생된 자료로부터 산정한 강우-빈도 곡선의 신뢰구간과 비교함으로서 불확실성이 낮은 확률강우량을 산정할 수 있는 매개변수 추정방법을 평가하고자하였다.

  • PDF

Hydrologic Utilization of Radar-Derived Rainfall (II) Uncertainty Analysis (레이더 추정강우의 수문학적 활용 (II): 불확실성 해석)

  • Kim Jin-Hoon;Lee Kyoung-Do;Bae Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1051-1060
    • /
    • 2005
  • The present study analyzes hydrologic utilization of optimal radar-derived rainfall by using semi-distributed TOPMODEL and evaluates the impacts of radar rainfall and model parametric uncertainty on a hydrologic model. Monte Carlo technique is used to produce the flow ensembles. The simulated flows from the corrected radar rainfalls with real-time bias adjustment scheme are well agreed to observed flows during 22-26 July 2003. It is shown that radar-derived rainfall is useful for simulating streamflow on a basin scale. These results are diagnose with which radar-rainfall Input and parametric uncertainty influence the character of the flow simulation uncertainty. The main conclusions for this uncertainty analysis are that the radar input uncertainty is less influent than the parametric one, and combined uncertainty with radar and Parametric input can be included the highest uncertainty on a streamflow simulation.

Robust High-Gain Observer Based SOC Estimator for Uncertain RC Model of Li-Ion Batteries (불확실성을 갖는 RC 모델 기반의 리튬이온 배터리 SOC 추정을 위한 강인한 고이득 관측기 설계)

  • Lee, Jong-Yeon;Kim, Wonho;Hyun, Chang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.214-219
    • /
    • 2013
  • This paper proposes the robust high-gain observer based SOC estimatro for uncertain RC model of Li-Ion batteries. In general, RC battery model has inevitable uncertainties and it cause some negative effect to estimate the accurate SOC of Li-Ion batteries. The proposed estimator overcomes such weakness with two techniques; high-gain observer design technique and sliding mode control technique. A high-gain observer provides the robustness against model uncertainties to the proposed estimator. A sliding mode control technique helps the proposed estimator by reducing the side effect of adopting a high-gain observer such as peaking phenomenon and perturbation. The performance of the proposed estimator is verified by some simulation.

Investigating Uncertainty in Flow Measurement and Developing Rating Curves (유량측정시 불확실성의 검토와 수위-유량곡선식의 개발)

  • Lee, Kil Seong;Lee, Kyung Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1242-1246
    • /
    • 2004
  • 본 연구에서는 유속계와 봉부자를 동한 측정값의 불확실성를 검토한 후, 한강의 7개 지류의 실측 자료들의 불확실성을 ISO 규정을 통하여 추정하였다. Simulated Annealing 기법과 황금비 분할법을 이용한 비선형회귀식을 적용하여 기존의 수위-유량 곡선식자 비교해보았다. 불확실성 추정결과 유량 측정치들의 불확실성이 ISO 규정의 기준에 비해 높게 추정되었으며, 특히 무작위 오차와 계통 오차 중에 무작위 오차의 불착실성이 높게 나타났다. 또한, 기존 수위-유량곡선식과 Simulated Annealing 기법과 황금비 분할법을 이용한 방법을 비교해본 결과 황금비 분할법이 가장 좋은 결과를 얻었다. 이때 수위-유량곡선식의 영수위값을 황금비 분할법을 이용해 구한 후 비교해 본 결과는 기존의 선형회귀방법과 비선형방법에서 큰 차이를 보이지 않았다. 또한 곡선 분리시에는 하나의 수위-유량곡선일때보다 오차가 줄어드는 경향을 보였다.

  • PDF

Regional Low Flow Frequency Analysis Using Bayesian Multiple Regression (Bayesian 다중회귀분석을 이용한 저수량(Low flow) 지역빈도분석)

  • Kim, Sang-Ug;Lee, Kil-Seong;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.169-173
    • /
    • 2008
  • 본 연구는 저수량 지역 빈도분석(regional low flow frequency analysis)을 수행하기 위하여 일반최소자승법(ordinary least squares method)을 이용한 Bayesian 다중회귀분석을 적용하였으며, 불확실성측면에서의 효과를 탐색하기 위하여 Bayesian 다중회귀분석에 의한 추정치와 t 분포를 이용하여 산정한 일반 다중회귀분석의 추정치의 신뢰구간을 비교분석하였다. 각 재현기간별 비교결과를 보면 t 분포를 이용하여 산정된 평균 추정치와 Bayesian 다중회귀분석에 의한 평균 추정치는 크게 다르지 않았다. 그러나 불확실성 측면에서 평가해볼 때 신뢰구간의 상한추정치와 하한추정치의 차이는 Bayesian 다중회귀분석을 사용한 경우가 기존 방법을 사용한 경우보다 훨씬 작은 것으로 나타났으며, 이로부터 저수량(low flow) 지역 빈도분석을 수행하는 경우 Bayesian 다중회귀분석이 일반 회귀분석보다 불확실성을 표현하는데 있어서 우수하다는 결과를 얻을 수 있었다. 또한 낙동강 유역에 2개의 미계측 유역을 선정하고 구축된 Bayesian 다중회귀모형을 적용하여 불확실성을 포함한 미계측 유역에서의 저수량(low flow)을 추정하였으며 이와 같은 방법이 미계측 유역에서의 저수(low flow) 특성을 나타내는 데 있어서 효과적일 수 있음을 입증하였다.

  • PDF

Analysis of the effect of damage fields containing stochastic uncertainty on stiffness reduction (확률적 불확실성을 포함한 손상 장에서의 강성 저감 효과 분석)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.357-361
    • /
    • 2011
  • 본 논문에서는 확률적 불확실성을 포함한 손상 장에서 강성저감 효과를 추정하는 방법을 제안하였다. 실제 교량 구조물에 분포된 손상 장은 매우 불확실하며 손상의 위치와 형상 또한 정확히 알 수 없는 경우가 많다. 그러나 대부분의 손상 추정 문제는 균열이나 손상의 위치와 형상을 기지의 주어진 정보로 가정하고 손상을 추정한다. 제안 기법에서는 이러한 손상의 위치와 형태가 본질적으로 불확실하다는 가정 하에 이 불확실성을 수정 가우스 강성 저감 분포 함수를 도입하여 기술한다. 교량에 국부적으로 발생된 손상은 교량의 요소강성의 저감 분포로 변환되어 손상이 발생한 전체 시스템의 강성을 표현하고 이를 통해 손상이 발생한 시스템의 전체 응답을 해석할 수 있게 된다. 수정 가우스 강성 저감 분포 함수는 손상 분포의 개략적 중심을 표현하는 평균 변수와 강성 저감의 비국소적 분포 특성을 묘사하는 표준편차 변수, 손상 중심의 손상 정도를 표현하는 강성저감 변수로 구성된다. 본 논문에서는 손상 장에서 손상의 위치나 형태에 대한 확률적 불확실성을 기술하는 수정 가우스 강성 저감 분포 함수를 포함한 유한요소모델을 정식화하여 제시한다. 또한 단일 또는 복합 균열로 인해 교량 구조물에 국부적인 손상이 야기된 경우에 대한 수치 예제를 통하여 균열 등에 대한 정보가 불확실하더라도 수정 가우스 강성 저감 분포 함수를 통해 강성 저감 효과가 분석될 수 있음을 확인하였다.

  • PDF

Uncertainty Estimation of AR Model Parameters Using a Bayesian technique (Bayesian 기법을 활용한 AR Model 매개변수의 불확실성 추정)

  • Park, Chan-Young;Park, Jong-Hyeon;Park, Min-Woo;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.280-280
    • /
    • 2016
  • 특정 자료의 시간의 흐름에 따른 예측치를 추정하는 방법으로 AR Model 즉, 자기회귀모형이 많이 사용되고 있다. AR Model은 변수의 현재 값을 과거 값의 함수로 나타내게 되는데, 이런 시계열 분석 모델을 사용할 때 매개변수의 추정 과정이 필수적으로 요구된다. 일반적으로 매개변수를 추정하는 방법에는 확률적근사법(stochastic approximation), 최소제곱법(method of least square), 자기상관법(method of autocorrelation method), 최우도법(method of maximum likelihood) 등이 있다. AR Model에서 가장 많이 사용되는 최우도법은 표본크기가 충분히 클 때 가장 효율적인 방법으로 평가되지만 수치적으로 해를 구하는 과정이 복잡한 경우가 많으며, 해를 구하지 못하는 어려움이 따르기도 한다. 또한 표본 크기가 작을 때 일반적으로 잘 일치하지 않은 결과를 얻게 된다. 우리나라의 강우, 유량 등의 자료는 자료의 수가 적은 경우가 많기 때문에 최우도법을 통한 매개변수 추정 시 불확실성이 내재되어있지만 그것을 정량적으로 제시하는데 한계가 있다. 본 연구에서는 AR Model의 매개변수 추정 시 Bayesian 기법으로 매개변수의 사후분포(posterior distribution)를 제공하여 매개변수의 불확실성 구간을 정량적으로 표현하게 됨으로써, 시계열 분석을 통해 보다 신뢰성 있는 예측치를 얻을 수 있으리라 판단된다.

  • PDF

Comparative Analysis of Parameter Estimation Methods in Estimation of Spatial Distribution of Probability Rainfall (확률강우량의 공간분포추정에 있어서 매개변수 추정기법의 비교분석)

  • Seo, Young-Min;Yeo, Woon-Ki;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.413-413
    • /
    • 2011
  • 강우의 공간분포에 대한 신뢰성 있는 추정은 수자원 해석 및 설계에 있어서 필수적인 요소이다. 강우장의 공간변동성에 대한 고해상도 추정은 홍수, 특히 돌발홍수의 원인이 되는 국지성 호우의 확인 및 분석에 있어서 중요하다. 또한 강우의 공간 변동성에 대한 고려는 면적평균강우량 추정의 정확도를 향상시키는데 있어서 중요하며, 강우-유출모델의 모의결과에 대한 신뢰도를 향상시키는데 큰 영향을 미친다. 최근 공간자료에 대한 공간분포예측에 있어서 공간상관성을 고려할 수 있는 공간통계학적 기법의 적용이 증가하고 있으며, 이러한 공간통계학적 기법의 적용에 있어서 신뢰성 있는 모델 매개변수의 추정 및 불확실성 평가는 공간분포 예측결과에 대한 신뢰성을 향상시키는데 중요한 역할을 한다. 외국의 경우 공간분포예측 및 모의, 매개변수의 불확실성 평가 등과 관련하여 활발한 연구가 이루어지고 있는 반면 국내 수자원 분야에서는 아직까지 활발한 연구가 이루어지고 있지 않은 실정이다. 따라서 본 연구에서는 계층구조로 구성된 가우시안 공간선형혼합모델을 적용하여 확률강우량의 공간분포를 추정함에 있어서 모델 매개변수에 대한 추정기법을 비교하였으며, 매개변수 추정기법으로서 경험베리오그램에 대한 곡선적합기법인 보통최소제곱법 및 가중최소제곱법, 우도함수를 기반으로 하는 최우도법 및 REML과 같은 기존의 매개변수 추정기법들과 최근 공간통계학 분야에서 적용이 증가하고 있는 Bayesian 기법을 비교하였다. 이로부터 매개변수 추정기법 간의 매개변수 추정치에 대한 정량적 비교결과를 제시하였으며, Bayesian 기법의 적용을 통해 매개변수에 대한 불확실성 추정결과를 제시하였다. 이러한 결과들은 확률강우량의 공간분포 추정에 있어서 공간예측모델의 매개변수 추정 및 예측에 대한 신뢰성을 향상시킬 수 있는 기초자료로 활용될 수 있을 것이다.

  • PDF