• Title/Summary/Keyword: 불확실성분석

Search Result 2,177, Processing Time 0.034 seconds

Projecting Water Balance for the Han River Basin Considering Climate Change Uncertainty (기후변화의 불확실성을 고려한 한강유역의 물수급 전망)

  • Seo, Seung-Beom;Kim, Young-Oh;Lee, Jae-Kyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.30-30
    • /
    • 2011
  • 현재 우리나라는 수자원의 안정적인 확보와 효율적인 관리를 위하여 20년 단위의 수자원장기 종합계획을 수립하고 있으며, 향후 발생가능한 물의 과부족을 평가하는 물수급 분석을 통해 최적의 수자원관리 계획을 수립하고 있다. 하지만, 현재의 수자원장기종합계획에서는 미래 물수급 전망을 단일 값으로 제시하는 확정론적 기법을 적용하고 있으며, 과거 유출패턴이 미래에도 똑같이 재현된다는 가정 하에 물수급 분석을 수행한다. 이는 기후변화의 불확실성에 따른 물공급 시나리오의 다양성을 고려하지 않는 것을 뜻하며, 현재 다양한 GCM(Global Circulation Model)을 통해 제시되고 있는 미래 수자원 변동 전망을 물수급 분석에 반영하지 않고 있음을 말해 주는 것이다. 따라서, 본 연구에서는 기후변화에 따른 미래 자연유출량의 불확실성을 반영할 수 있는 물수급 전망 기법을 제안코자 한다. 먼저 국내유역에 적합한 GCM 시나리오들을 선정하였으며, 스케일상세화(downscaling) 기법을 통해 한강유역 중권역별 강우량, 증발산량 등의 일 단위 미래 수문기상 자료를 구축하였다. 다음으로, 앞서 구축한 기상자료를 개념적 강우-유출 모형인 TANK 모형에 입력하여 중권역별 미래 유출량을 산정하여 각 시나리오별 미래 유출량 변화를 전망하였다. 물수급 분석 모형으로는 한국건설기술연구원에서 미국 SEI-B와 제휴하여 개발한 통합수자원평가계획모형인 K-WEAP을 사용하였으며, 물수급 분석 결과를 바탕으로 중권역별 물공급 지수를 산정하여 제시하였다. 현재 대부분의 기후변화 연구에서는 GCM 시나리오를 직접 적용한 결과를 바탕으로 미래 수자원 전망 결과를 제시하고 있는데, 여기에는 GCM 자체의 불확실성은 물론 과거 관측 자료를 입력자료로 하는 기존 연구 방법론으로 부터의 급진적인 변화에 따른 연구 연속성의 문제 또한 존재한다. 따라서 본 연구에서는 GCM 유출량 시나리오의 직접 적용 대신 과거 유출 시나리오별 가중값을 산정하여 반영함으로서 GCM 모의 결과의 불확실성을 저감하는 방안을 제안하였다.

  • PDF

Uncertainty Analysis for Parameters of Probability Distribution in Rainfall Frequency Analysis: Bayesian MCMC and Metropolis-Hastings Algorithm (강우빈도분석에서 확률분포의 매개변수에 대한 불확실성 해석: Bayesian MCMC 및 Metropolis-Hastings 알고리즘을 중심으로)

  • Seo, Young-Min;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1385-1389
    • /
    • 2010
  • 수자원 계획에 있어서 강우 또는 홍수빈도분석시 주로 사용되는 확률의 개념은 상대빈도에 대한 극한으로 확률을 정의하는 빈도학파적 확률관점에 속하며, 확률모델에서 미지의 매개변수들은 고정된 상수로 간주된다. 따라서 확률은 객관적이고 매개변수들은 고정된 값을 가지기 때문에 이러한 매개변수들에 대한 확률론적 설명은 매우 어렵다. 본 연구에서는 강우빈도해석에서 확률분포의 매개변수에 대한 불확실성을 정량화하기 위하여 베이지안 MCMC 및 Metropolis-Hastings 알고리즘을 이용한 불확실성 평가모델을 구축하였다. 그리고 베이지안 MCMC 및 Metropolis-Hastings 알고리즘의 적용을 통하여 확률강우량 산정시 확률분포의 매개변수에 대한 통계학적 특성 및 불확실성 구간을 정량화하였으며, 이를 바탕으로 홍수위험평가 및 의사결정과정에서 불확실성 및 위험도를 충분히 설명할 수 있는 프레임워크 구성을 위한 기초를 마련할 수 있었다.

  • PDF

Parameter Optimization and Uncertainty Analysis of the NWS-PC Rainfall-Runoff Model Coupled with Bayesian Markov Chain Monte Carlo Inference Scheme (Bayesian Markov Chain Monte Carlo 기법을 통한 NWS-PC 강우-유출 모형 매개변수의 최적화 및 불확실성 분석)

  • Kwon, Hyun-Han;Moon, Young-Il;Kim, Byung-Sik;Yoon, Seok-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.383-392
    • /
    • 2008
  • It is not always easy to estimate the parameters in hydrologic models due to insufficient hydrologic data when hydraulic structures are designed or water resources plan are established. Therefore, uncertainty analysis are inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. The NWS-PC model is calibrated against observed daily runoff, and thirteen parameters in the model are optimized as well as posterior distributions associated with each parameter are derived. The Bayesian Markov Chain Monte Carlo shows a improved result in terms of statistical performance measures and graphical examination. The patterns of runoff can be influenced by various factors and the Bayesian approaches are capable of translating the uncertainties into parameter uncertainties. One could provide against an unexpected runoff event by utilizing information driven by Bayesian methods. Therefore, the rainfall-runoff analysis coupled with the uncertainty analysis can give us an insight in evaluating flood risk and dam size in a reasonable way.

A Study on Estimation of Design Rainfall and Uncertainty Analysis Based on Bayesian GEV Distribution (Bayesian GEV분포를 이용한 확률강우량 추정 및 불확실성 평가)

  • Kwon, Hyun-Han;Kim, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.366-366
    • /
    • 2012
  • 확률강우량은 하천설계, 수자원설계 및 계획을 위한 기초자료로 활용되며 최근 이상기후 및 기후변화로 인한 극치강우의 빈도 및 양적 증가로 인한 확률강우량 산정의 불확실성 분석에 대한 관심이 크게 증가하고 있다. 수문빈도 해석에 있어서 대부분 지역이 50년 이하의 수문자료가 이용되고 있으며 수문설계에서 요구되는 50년 이상의 확률강수량 추정시에는 상당한 불확실성을 내포하고 있다. 이러한 점에서 본 연구에서는 자료연수에 따른 Sampling Error와 분포형의 매개변수의 불확실성을 고려한 해석모형을 구축하고자 한다. 빈도해석에서 매개변수를 추정하기 위해서는 일반적으로 모멘트법, 최우도법, 확률가중모멘트법이 이용되고 있으나 사용되는 분포형에 따라서 통계학적으로 불확실성 구간을 정량화하는 과정이 난해할 뿐만 아니라 극치 수문자료가 Thick-Tailed분포의 특성을 가짐에도 불구하고 신뢰구간 산정시 정규분포로 가정하는 등 기존 해석 방법에는 많은 문제점을 내포하고 있다. 본 연구에서는 이러한 매개변수의 불확실성 평가에 있어서 우수한 해석능력을 발휘하는 Bayesian기법을 도입하여 분포형의 매개변수를 추정하고 매개변수 추정과 관련된 불확실성을 평가하고자 한다. 이와 별개로 자료연한에 따른 Sampling Error를 추정하기 위해서 Bootstrapping 기반의 해석모형을 구축하고자 하며 최종적으로 빈도해석시에 나타나는 불확실성을 종합적으로 검토하였다. 빈도해석을 위한 확률분포형으로 GEV(generalized extreme value)분포를 이용하였으며 Gibbs 샘플러를 활용한 Bayesian Markov Chain Monte Carlo 모의를 기본 해석모형으로 활용하였다.

  • PDF

At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Comparative study for construction of Prior distribution (Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 사전분포의 적용성 비교)

  • Kim, Sang-Ug;Lee, Kil-Seong;Park, Kyung-Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1121-1124
    • /
    • 2008
  • 저수분석(low flow analysis)은 수자원공학에서 중요한 분야 중 하나이며, 특히 저수량 빈도분석(low flow frequency analysis)의 결과는 저수(貯水)용량의 설계, 물 수급계획, 오염원의 배치 및 관개와 생태계의 보존을 위한 수량과 수질의 관리에 중요하게 사용된다. 그러므로 본 연구에서는 저수량 빈도분석을 위한 점빈도분석을 수행하였으며, 특히 빈도분석에 있어서의 불확실성을 탐색하기 위하여 Bayesian 방법을 적용하고 그 결과를 기존에 사용되던 불확실성 탐색방법과 비교하였다. 본 논문의 I편에서는 Bayesian 방법 중 사전분포(prior distribution)와 우도함수(likelihood function)의 복잡성에 상관없이 계산이 가능한 Bayesian MCMC(Bayesian Markov Chain Monte Carlo) 방법과 Metropolis-Hastings 알고리즘을 사용하기 위한 여러과정의 이론적 배경과 Bayesian 방법에서 가장 중요한 요소인 사전분포를 구축하고 이를 비교 및 평가하였다. 고려된 사전분포는 자료에 기반하지 않은 사전분포와 자료에 기반한 사전분포로써 두 사전분포를 이용하여 Metropolis-Hastings 알고리즘을 수행하고 그 결과를 비교하여 저수량 빈도분석에 합리적인 사전분포를 선정하였다. 또한 알고리즘의 수행과정에서 필요한 제안분포(proposal distribution)를 적용하여 그에 따른 알고리즘의 효율성을 채택률(acceptance rate)을 산정하여 검증해 보았다. 사전분포의 분석 결과, 자료에 기반한 사전분포가 자료에 기반하지 않은 사전분포보다 정확성 및 불확실성의 표현에 있어서 우수한 결과를 제시하는 것을 확인할 수 있었고, 채택률을 이용한 알고리즘의 효용성 역시 기존 연구자들이 제시하였던 만족스러운 범위를 가지는 것을 알 수 있었다. 최종적으로 선정된 사전분포는 본 연구의 II편에서 Bayesian MCMC 방법의 사전분포로 이용되었으며, 그 결과를 기존 불확실성의 추정방법의 하나인 2차 근사식을 이용한 최우추정(maximum likelihood estimation)방법의 결과와 비교하였다.

  • PDF

Identification of Uncertainty in Fitting Rating Curve with Bayesian Regression (베이지안 회귀분석을 이용한 수위-유량 관계곡선의 불확실성 분석)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.943-958
    • /
    • 2008
  • This study employs Bayesian regression analysis for fitting discharge rating curves. The parameter estimates using the Bayesian regression analysis were compared to ordinary least square method using the t-distribution. In these comparisons, the mean values from the t-distribution and the Bayesian regression are not significantly different. However, the difference between upper and lower limits are remarkably reduced with the Bayesian regression. Therefore, from the point of view of uncertainty analysis, the Bayesian regression is more attractive than the conventional method based on a t-distribution because the data size at the site of interest is typically insufficient to estimate the parameters in rating curve. The merits and demerits of the two types of estimation methods are analyzed through the statistical simulation considering heteroscedasticity. The validation of the Bayesian regression is also performed using real stage-discharge data which were observed at 5 gauges on the Anyangcheon basin. Because the true parameters at 5 gauges are unknown, the quantitative accuracy of the Bayesian regression can not be assessed. However, it can be suggested that the uncertainty in rating curves at 5 gauges be reduced by Bayesian regression.

Intensity-persistence day-frequency analysis of future extreme heat wave event using Bayesian method and uncertainty assessment (베이지안기법을 이용한 미래 폭염사상의 강도-지속기간-발생빈도 해석 및 불확실성 평가)

  • Lee, Okjeong;Lee, Jeonghoon;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.355-355
    • /
    • 2021
  • 극한 폭염사상은 지난 20세기 이후 점점 더 빈번하게 발생하고 있으며, 더 광범위한 지역에서 발생하고 있다. 이러한 폭염사상은 다가오는 지구 온난화 시대에서 그 강도가 더 강해지고 지속기간이 길어질 것으로 예상되고 있다. 본 연구에서는 극한강우에 대한 강우강도-지속기간-빈도(intensity-duration-frequency, IDF)곡선의 개념을 폭염사상에 적용하여 미래의 극심한 폭염사상에 대한 발생확률, 강도 및 지속날짜(heat wave intensity-persistence day-frequency, HPF) 간의 관계를 확인해보고자 한다. 또한 해당 모델의 불확실성은 베이지안 기법을 이용하여 분석하였다. 우리나라 6개 주요 지역(대관령, 서울, 대전, 대구, 광주, 부산)에 대해 16개의 미래 일 최대 기온 앙상블 자료를 이용하여 비정상성 HPF곡선을 적용하였다. 미래 극한 폭염 앙상블 결과를 분석한 결과, 2050년을 기준으로 지속기간 2일에 대해 극한 폭염의 강도가 RCP 4.5 이하 시나리오 기준 1.23 ~ 1.69 ℃ 범위에서 상승할 가능성이 높은 것으로 나타났으며, RCP 8.5 이하 시나리오 기준의 경우 1.15 ~ 1.96 ℃ 범위로 나타났다. 또한 HPF 모델의 매개변수 추정으로 인한 불확실성의 경우, 다양한 기후 모델의 변동성으로 인한 불확실성보다 크게 나타났다. 모델의 매개변수 추정에 따른 불확실성을 반영한 결과, 2010~2050년에 해당하는 폭염의 강도에 대한 delta change의 95% 신뢰구간은 RCP 4.5 이하에서 0.53 ~ 4.94 ℃, RCP 8.5 이하에서 0.89 ~ 5.57 ℃로 나타났다.

  • PDF

Flood stage analysis considering the uncertainty of roughness coefficients and discharge for Cheongmicheon watershed (조도계수와 유량의 불확실성을 고려한 청미천 유역의 홍수위 해석)

  • Shin, Sat-Byeol;Park, Jihoon;Song, Jung-Hun;Kang, Moon Seong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.661-671
    • /
    • 2017
  • The objective of this study was to analyze the flood stage considering the uncertainty caused by the river roughness coefficients and discharge. The methodology of this study involved the GLUE (Generalized Likelihood Uncertainty Estimation) to quantify the uncertainty bounds applying three different storm events. The uncertainty range of the roughness was 0.025~0.040. In case of discharge, the uncertainty stemmed from parameters in stage-discharge rating curve, if h represents stage for discharge Q, which can be written as $Q=A(h-B)^C$. Parameters in rating curve (A, B and C) were estimated by non-linear regression model and assumed by t distribution. The range of parameters in rating curve was 5.138~18.442 for A, -0.524~0.104 for B and 2.427~2.924 for C. By sampling 10,000 parameter sets, Monte Carlo simulations were performed. The simulated stage value was represented by 95% confidence interval. In storm event 1~3, the average bound was 0.39 m, 0.83 m and 0.96 m, respectively. The peak bound was 0.52 m, 1.36 m and 1.75 m, respectively. The recurrence year of each storm event applying the frequency analysis was 1-year, 10-year and 25-year, respectively.

Uncertainty assessment of point and regional frequency analysis using Bayesian method (베이지안기법을 이용한 지점 및 지역빈도해석의 불확실성 평가)

  • Lee, Jeonghoon;Lee, Okjeong;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.406-406
    • /
    • 2021
  • 극한강우사상의 분석은 다양한 극치 분포로 구성된 극치이론을 통해 가능하다. 일반적으로 단일 지점의 극한사상의 분석을 위한 지점빈도해석 (Point Frequency Analysis, PFA)이 다양한 재현기간에 해당하는 강우량을 추정하는데 널리 사용되어왔다. 하지만 수문기후학적 극치기록은 시간적 그리고 공간적으로 제한적이다. 따라서 모의 불확실성을 줄이고 신뢰성 높은 결과를 도출하기 위해 서로 유사한 분포를 가질 수 있는 인근 지점의 활용하는 지역빈도해석 (Regional Frequency Analysis, RFA) 방법이 개발되어 적용되고 있다. 본 연구에서는 부산, 울산, 경남지역의 기상청 종관기상관측시스템(Automated Synoptic Observing System, ASOS) 울산, 부산, 통영, 진주, 거창, 합천, 밀양, 산청, 거제, 남해지점 일강수량을 자료를 기반으로 Metropolis-Hasting 알고리즘을 사용하여 일반극치분포(Generalized Extreme Value, GEV)의 매개변수를 추정하고 PFA 및 RFA의 불확실성을 평가하고자 한다. 이러한 연구는 공간적 구성 요소(예, 지리적 좌표, 고도)를 고려하지 못하며 추가변수 (예, 공변량)를 분석에 결합할 수 없는 등의 RFA의 한계를 극복하고, 명시적으로 불확실성을 추정하여 결과의 신뢰성을 확보 할 수 있는 계층적 베이지안 모델의 개발에 도움이 되리라 기대된다.

  • PDF

Safety Assessment of Corrosion-damaged Steel Structure using Imprecise Reliability (불확실 신뢰도 기법을 이용한 부식된 강구조물의 안전도평가)

  • Choi, Hyun Ho;Cho, Hyo Nam;Seo, Jong Won;Sun, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.293-300
    • /
    • 2006
  • There is a high degree of uncertainty in measurements of the thickness or the loss of thickness of corroded elements. Generally the thickness of corroded elements varies from one location of the element to another depending on the degree of corrosion, which makes the safety assessment difficult. Therefore, a procedure for safety assessment of corrosion- damaged steel structures using an imprecise reliability is proposed in this paper. The proposed safety assessment procedure using the imprecise reliability was also applied to a cable-stayed bridge in Korea to demonstrate its effectiveness and applicability. Since there is a large variation in measurements of the thickness of corroded elements, the thickness of corroded elements was considered as the imprecise element. This variation was found to be directly related to the degree of corrosion. Therefore, the variation increases as the degree of corrosion increases. Based on the comparative observations between the conventional reliability and the imprecise reliability, it is suggested that the imprecise reliability analysis derived based on the subjective or statistical judgment of conditional independence could be successfully utilized for the risk or safety assessment of corrosion-damaged structures.