• Title/Summary/Keyword: 불안정 현상

Search Result 498, Processing Time 0.019 seconds

Study on Acoustic Attenuation due to Particles and Flow Turning in Rocket Motors (고체 입자와 유동방향 변환에 의한 로켓 모터 내 음향 감쇠에 대한 고찰)

  • Kim, Taejin;Sung, Hong-Gye;Seo, Seonghyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.838-844
    • /
    • 2015
  • This paper includes summarization and analysis of previous research results on acoustic attenuation due to particles and flow turning in rocket motors among various damping parameters. Particle damping is the most effective mechanism in suppressing high-frequency combustion instabilities occurring in rocket combustion chambers, which is dependent on the size and the mass fraction of particles. Relatively weak attenuation by flow turning compared to particle damping depends on the geometry of propellant and a combustion chamber. Pumping driving effects need to be taken into account when realizing vorticity generation on the propellant surface. However, its driving effects become cancelled out by flow turning loss when the propellant geometry is cylindrical.

Limit Cycle Amplitude Prediction Using Results of Flame Describing Function Modeling (화염묘사함수 모델링 결과를 이용한 한계 진폭 예측)

  • Kim, Jihwan;Kim, Jinah;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.46-53
    • /
    • 2016
  • It is required to predict a limit cycle amplitude controlled by system's nonlinear behavior as well as an eigen-frequency and initial growth rate of instabilities under the linear motions, in order to fully understand combustion instabilities in a lean premixed gas turbine combustor. Special focus of the current work is placed on the limit cycle amplitude prediction using flame describing function(FDF) where the ratio of a heat release fluctuation to a given flow perturbation is expressed as a function of frequency and amplitude. In this study, the CFD modeling work based on RANS is carried out to obtain FDF, which makes that the nonlinear thermo-acoustic model is successfully developed for predicting the limit cycle amplitude of the combustion instability.

An Experimental Study on the Flame Dynamics in Ducted Combustor (덕트형 연소기에서 화염의 동특성에 관한 실험적 연구)

  • Jeong, Chanyeong;Kim, Taesung;Song, Jinkwan;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.121-131
    • /
    • 2013
  • The characteristics of flame dynamics occurring near the bluff body was experimentally investigated in a model combustor with V-gutter bluff body. Measurements of chemiluminescence with high speed camera and PIV were performed for visualization of flame structure. Flashback occurs due to the change of pressure gradient in the combustor, and the flashback distance depends on equivalent ratio. Unstable flames can be classified into three types depending on the flashback distance and structure. When the flame goes over the bluff body, an unusual flame structure occurs at the front of the bluff body. Re-stabilization takes place as the flame moves downstream of the combustor. This process is supported by a strong vortex structure behind the bluff body.

Modeling for Thermoacoustic Instability and Beating Pressure Amplification in Hybrid Rocket Combustion (하이브리드 로켓의 열음향 불안정과 연소압력 맥놀이 발생 모델링)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.783-789
    • /
    • 2022
  • In a recent study, it was observed that the combustion gas entering the post chamber of a hybrid rocket contains vortices with very small size and high frequency characteristics. In addition, it was observed that small vortices collided with the nozzle wall to create a counter-flow, resulting in additional combustion with ignition delay. This study investigated the physical relationship between ignition delay induced by the counter-flow and the formation of beating pressure. To do this, a newly modified model was proposed by including ignition delay in the existing energy kicked oscillator model proposed by Culick. Numerical results show that the ignition delay is an important factor in determining the occurrence of the combustion pressure beats through the periodic formation of thermoacoustic coupling. In addition, when the ignition delay was reduced by increasing the post chamber length, the phase difference between the energy kick and the pressure generation was increased, the periodic pressure beats did not occur at all.

Damping Characteristic of Helmholtz Resonator according to Its Geometry and Sound Pressure Level (헬름홀쯔 공명기의 기하학적 형상과 가진 음압에 따른 감쇠 특성)

  • Song, Jae-Kang;Kim, Ki-Woo;Chae, Byoung-Chan;Ko, Young-Sung;Kim, Sun-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.966-972
    • /
    • 2010
  • Damping characteristics of a Helmholtz resonator to passively control the combustion instability were investigated by linear acoustic analysis and atmospheric acoustic tests. Its orifice length and diameter were selected as the design parameters and supplied SPL(sound pressure level) effect on damping characteristics were investigated. Damping capacity is improved by decreasing the orifice length as well as by increasing the orifice diameter. Also, the results showed that the damping capacity of the resonator decreased nonlinearly about above 110 dB and instabilities in the nonlinear region were more effectively suppressed by increasing the orifice diameter.

Transient Stability of Industrial Plant on Voltage Disturbance in the Utility System (전력계통 전압외란에 대한 자가수용가의 과도 안정도 해석)

  • 조양행;정재길
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.132-138
    • /
    • 1998
  • The dynamic analysis of stability in industrial power system is an important subject. In this paper, the effect of voltage dips for short duration (short-circuit) in the utility system on generators, synchronous motors of the industrial plant and the measures to be adopted to reduce the undesired effects of voltage dips re investigated. In the case of utility three-phase short-circuits of longer duration, both the generators and synchronous motors in the plant may become unstable. In order to avoid instability through fault clearing in the second zone time a decoupling device is necessary. The instability of voltage can be avoided with a well suited setting time of disconnecting device and load trip.

  • PDF

Effects of Orifice Length on Helmholtz Resonator (음향공 오리피스 길이 변화에 따른 감쇠 효과)

  • Song, Jae-Gang;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.36-39
    • /
    • 2008
  • Combustion instability is one of the most difficult problems in the development of liquid rocket engines. One of the damping devices for combustion instability is helmholtz resonator. Orifice length is one of factors for designing it. In this study, effects of orifice length are investigated by an experimental tests and a linear acoustic analysis. Damping capacity was improved by the increase of the length of resonator. And the results of an experimental tests and a linear acoustic analysis are showed similar tendency. Also, effects of supplied SPL(sound pressure level) are investigated and the results show that nonlinear effects are increase by the increase of supplied SPL.

  • PDF

A Survey on Dynamical Modeling for Active Control of Thermo-Acoustic Instabilities (열-음향학적 불안정 현상의 능동제어를 위한 동역학적 모델링에 관한 현황 분석)

  • Na, Seon-Hwa;Ko, Sang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.78-90
    • /
    • 2011
  • This paper surveys the recent research activities regarding dynamical modeling of thermo-acoustic instabilities which are fundamental to actively control such phenomena in gas-turbine engines, rockets, and etc. For this, we introduce reduced-order modeling approaches, mainly conducted after 1990s. Particularly, we survey grey-box approaches, which determine the structure of the model based on physical rules and use system's input-output data for estimating parameters of the model. We also introduce black-box approaches using model structures without physics-based interpretation. Finally, we briefly discuss future directions and feasibilities of the research in this field.

Flame Response Modeling for Lean Premixed Combustors Using CFD (CFD를 이용한 희박 예혼합 연소기에서의 연소 응답 모델링)

  • Kim, Daesik;Lee, Jeongwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.773-779
    • /
    • 2014
  • A qualitative and quantitative analysis on flame dynamics is required to model combustion instability characteristics in gas turbine lean premixed combustors. The current paper shows the flame transfer function modeling results using CFD(Computational Fluid Dynamics) techniques for the flame dynamics study. It is generally known that flame shapes determine the basic characteristics of the flame transfer function. The comparisons of the modeled flame shapes with the measured ones were made using the optimized heat transfer conditions. Modeling results of the flame transfer function show the close behaviors to the measured data with a reasonable accuracy if the flame geometry can be exactly captured.

Effects of Changes in Equivalence Ratio and Modulation Condition on Flame Transfer Function (당량비 및 섭동 조건 변화가 화염 전달 함수에 미치는 영향)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.35-40
    • /
    • 2011
  • An experimental study of the flame response in a turbulent premixed combustor has been conducted in order to investigate mechanisms for combustion instabilities in a lean premixed gas turbine combustor. A lab-scale combustor and mixing section system were fabricated to measure the flame transfer function. Measurements are made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results show that the flame transfer functions are greatly dependent on the modulation frequency as well as operating conditions such as equivalence ratio. Flame dynamics can be generalized as a function of Strouhal number which is a ratio of flame length to modulation wave length.