• Title/Summary/Keyword: 불변의 확장 칼만 필터 슬램

Search Result 2, Processing Time 0.014 seconds

Improvement of SLAM Using Invariant EKF for Autonomous Vehicles (Invariant EKF를 사용한 자율 이동체의 SLAM 개선)

  • Jeong, Da-Bin;Ko, Nak-Yong;Chung, Jun-Hyuk;Pyun, Jae-Young;Hwang, Suk-Seung;Kim, Tae-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.237-244
    • /
    • 2020
  • This paper describes an implement of Simultaneous Localization and Mapping(SLAM) in two dimensional space. The method uses Invariant Extended Kalman Filter(IEKF), which transforms the state variables and measurement variables so that the transformed variables constitute a linear space when variables called the invariant quantities are kept constant. Therefore, the IEKF guarantees convergence provided in the invariant quantities are kept constant. The proposed IEKF approach uses Lie group matrix for the transformation. The method is tested through simulation, and the results show that the Kalman gain is constant as it is the case for the linear Kalman filter. The coherence between the estimated locations of the vehicle and the detected objects verifies the estimation performance of the method.

The Implementation of Graph-based SLAM Using General Graph Optimization (일반 그래프 최적화를 활용한 그래프 기반 SLAM 구현)

  • Ko, Nak-Yong;Chung, Jun-Hyuk;Jeong, Da-Bin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.637-644
    • /
    • 2019
  • This paper describes an implementation of a graph-based simultaneous localization and mapping(SLAM) method called the General Graph Optimization. The General Graph Optimization formulates the SLAM problem using nodes and edges. The nodes represent the location and attitude of a robot in time sequence, and the edge between the nodes depict the constraint between the nodes. The constraints are imposed by sensor measurements. The General Graph Optimization solves the problem by optimizing the performance index determined by the constraints. The implementation is verified using the measurement data sets which are open for test of various SLAM methods.