• Title/Summary/Keyword: 분해율

Search Result 2,234, Processing Time 0.03 seconds

Biochemical properties and gluten degradation of Lactobacillus paracasei strain GLU70 isolated from salted seafood (젓갈에서 분리한 락토바실러스 파라카제이 GLU70 균주의 생화학적 특성 및 글루텐 분해능)

  • Park, Hyein;Yoon, Seul Gi;Jang, Junho;Byun, Ji Young;Yoon, Bok Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.203-208
    • /
    • 2022
  • Gluten is an insoluble protein present in cereals such as wheat. Gluten consumed through food is not digested and accumulates in the body; this has been linked to digestive discomfort, irritation, and various digestive disorders, including intestinal inflammation. In this study, the Lactobacillus paracasei strain GLU70, which exhibits a glutendegrading ability, was isolated from salted seafood. At a pH of 3.0, GLU70 showed a survival rate of approximately 84%, and at 0.3% oxgall, it showed a survival rate of approximately 53%. When the culture supernatant collected after 12 h of incubation was added to flour dough, approximately 50% gluten degradation was observed. Moreover, among several probiotic isolates exhibiting proteolytic activity selected to assess the gluten-degrading ability, GLU70 showed superior results regardless of the dough fermentation temperature. Although further research is required, GLU70 is expected to be of value in manufacturing gluten-reduced products and the food industry as an ingredient or additive.

Supercritical water oxidation of Dimethyl methylphosphonate(DMMP) (Dimethyl methylphosphonate(DMMP)의 초임계수 산화반응)

  • Lee, Hae-Wan;Ryu, Sam-Gon;Lee, Jong-Chol;Hong, Deasik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.636-643
    • /
    • 2006
  • Supercritical water oxidation of DMMP using continuous flow reactor was studied at temperature ranging from 440 to $540^{\circ}C$ and a fixed pressure of 242 bar. The range of residence times in the reactor was from 10 to 26 s, and oxygen excess value varied from -40 to 200%. Destruction efficiencies (DE) of DMMP were greater than 99.7% at $540^{\circ}C$, and increased as the DMMP concentrations were increased. DE of DMMP were significantly affected by oxygen concentration under stoichiometric amount, but showed little difference over stoichiometric amount. On the basis of 30 data with conversions greater than 85%, kinetic correlations for the DE of DMMP were developed. The pre-exponential factor was $(1.10{\pm}0.76){\times}10^6$, and the activation energy was $90.66{\pm}3.87kJ/mol$, and the reaction orders for DMMP and oxygen were $1.02{\pm}0.03$, $0.32{\pm}0.03$, respectively. The model predictions agreed well with the experimental data.

BTEX-contaminated Groundwater Remediation with Modified Fenton Reaction using Environmental Friendly Chelating Agent (친환경 착제가 적용된 modified Fenton 공정을 이용한 BTEX로 오염된 지하수의 복원)

  • Kwon, Yong-Jae;Jo, Young-Hoon;Jung, Jae-Gu;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.638-646
    • /
    • 2014
  • The effect of in-organic chelating agents with Fe(II) and Fe(III) in modified Fenton was evaluated to degradation BTEX (benzene, toluene, ethylbenzene, xylene). Citric acid and pyrophosphate were used in experimentals and an optimum chelating agent for BTEX degradation was determined. In $H_2O_2$/Fe(III)/citric acid, degradation of BTEX was decreased when concentration of citric acid was increased. In $H_2O_2$/Fe(III)/pyrophosphate, degradation of BTEX was increased when concentration of pyrophosphate was increased and degradation for BTEX was relatively high compared with $H_2O_2$/Fe(III)/citric acid. In $H_2O_2$/Fe(II)/chelating agents, degradation for BTEX was high and pH variation was minimized when molar ratio of Fe(II) and citric acid was 1:1. Optimum molar concentration of Fe(II), citric acid and $H_2O_2$ were 7 mM, 7mM and 500 mM for degradation of 100 mg/L of benzene to obtain best efficiency of $H_2O_2$, least precipitation of iron and best degradation.

Changes of Nitrogen Utilization Ratio , Protein Solution Ratio , free Sugars in Defatted Soybeans During the Manufacturing of Amino Acid Soysauce by a Low Hydrochloric Acid, Temperature (저염산(低鹽酸)으로 저온분해(低溫分解)한 아미노산(酸)간장 제조중(製造中) 질소이용률(窒素利用率), 단백분해율(蛋白分解率) 및 유리당(遊離糖)의 동향(動向))

  • Park, Chang-Hee;Park, Se-Ho;Lee, Suk-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.442-446
    • /
    • 1985
  • The changes of nitrogen utilization ratio (NUR), Protein solution ratio (PSR) and free sugar contents during the amino acid soysauce manufacturing process by a low hydrochloric acid, temperature were investigated. On hydrolysis by 6%-HCI (3 liquor rate of defatted soybean weight, 3LR) at $85^{\circ}C$, NUR and PSR were 74.51%, 56.49% at 65 hours. At the same time free sugars were detected glucose, galactose, arabinose, fructose, xylose. on hydrolysis at $95^{\circ}C$, NUR and PSR were 77.72%, 64.04% at 50 hours, and 5 free sugars of the above statement were detected at 5 hours. Remarkable decreases in the levels of free sugars, only glucose were observed after 80 hours of the hydrolysis. On hydrolysis by 12%-HCI(3LR) at $95^{\circ}C$, NUR and IRA were 88.41%, 69.47% at 50 hours, free sugar were nearly disappeared after 20-35hours. On hydrolysis, galactose's disappearence rate was faster than glucose's.

  • PDF

Solar Detoxification of Trichloroethylene in Waste Water with Slurry Batchtype Photoreactor (Slurry batch형 광화학 반응기를 이용한 폐수 내의 Trichlroethylene의 분해)

  • Lee, Tai-K.;Kim, Dong-H.;Cho, Sug-H.;Auh, Chung-Moo
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.10-20
    • /
    • 1992
  • In this experiment, photochemical reaction has been applied to destroy TCE in water phase. The main target of this work is to investigate the technical feasibility of large scale of solar detoxification reactor for water treatment. The results have revealed that solar detoxification utilizing photon energy from the sun is the most attractive process to decompose organic toxins in water phase at room temperature. The detailed results from this work are as follows; (1) The highest conversion ratio of TCE was obtained by using $TiO_2$, annatase as a photocatalyst among $TiO_2$ anatase, $TiO_2$ rutile and $V_2O_5$ under the same experimental condition. The anatase crystal structure was confirmed with XRD analysis, and its surface area was 7.748 $m^2/g$ from the BET-$N_2$ measurement (2) 0.1 wt% of $TiO_2$ anatase has been adopted as optimal quantity for batch slurry reactor at this experimental conditions. (3) The effect of hydrogen peroxide on the conversion of TCE was investigated. Its optimal quantity was 0.06 vol. % under this experimental conditions. (4) The effect of oxygen on the conversion of TCE also was studied by controlling the head space in photoreactor. Results indicated that sufficient amount of oxygen should be supplied to accomplish the highest conversion rate of TCE in water phase.

  • PDF

Isolation, Identification and Characterization of Bacteria Degrading Crude Oil (원유 분해 미생물의 분리, 동정 및 특성)

  • Oh, Kyoung-Taek;Lee, Yong-Woon;Kubo, Motoki;Kim, Seong-Jun;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1851-1859
    • /
    • 2000
  • Crude oil-degrading bacteria were isolated from the sites contaminated by oil products. The isolates were identified as Acinetobacter sp. A132, Pseudomonas putida A422, Pseudomonas aeruginosa F721, F722, and Xanthomonas maltophilia B823. The results of investigation on the degradability of crude oil indicated that the strain A132 had the highest rate of $6.04g/L{\cdot}day$. Also, the strain A132 and F722 almost degraded each of n-alkane compounds between $nC_{10}$ and $nC_{32}$. The strain A422 degraded benzene and xylene but not n-alkane. The strain B823 grew somewhat in crude oil but did not entirely degrade other substrates used in this study. The results of the GC/FID analysis on the degradability of the mixed n-alkane compounds showed that the strain F722 could degrade 100% of the compounds with $nC_7{\sim}nC_{10}$ and more than 80% of those with $nC_{11}{\sim}nC_{24}$.

  • PDF

Decay Rate and Nutrient Dynamics during Litter Decomposition of Quercus acutissima in Gongju and Jinju (공주와 진주지역에서 상수리나무 낙엽의 분해율 및 분해과정에 따른 영양염류 함량 변화)

  • Won, Ho-Yeon;Oh, Kyung-Hwan;Mun, Hyeong-Tae
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.537-545
    • /
    • 2012
  • Decay rate and nutrient dynamics during leaf litter decomposition of deciduous Quercus acutissima were compared between Gongju and Jinju for 33 months from December 2008 through March 2011. Percent remaining weight of Q. acutissima leaf litter after 33 months elapsed in Gongju and in Jinju was $41.2{\pm}0.4%$ and $28.3{\pm}0.6%$, and decay constant (k) was 0.39 and 0.61, respectively. Decomposition in Jinju was significantly faster than that in Gongju. This seemed to be related to higher temperature and precipitation in Jinju than those in Gongju during the experimental period. Initial C/N and C/P ratio of Q. acutissima leaf litter was 46.8 and 270.9, respectively. After 33 months elapsed, C/N and C/P ratios in Gongju decreased to 22.0 and 106.8, and those in Jinju decreased to 19.2 and 170.2, respectively. Initial concentration of N, P, K, Ca and Mg in Q. acutissima leaf litter was 8.31, 0.44, 4.18, 9.38, 1.37 mg/g, respectively. After 33 month elapsed, remaining N, P, K, Ca and Mg were 91.0, 85.4, 30.2, 47.9, 11.7% in Gongju, and 67.0, 54.2, 19.9, 30.0, 40.8% in Jinju, respectively. Except for Mg, remaining nutrients of decomposing leaf litter in Jinju were lower than those in Gongju. In case of N and P, initial immobilization was observed, however, only mineralization was observed in K, Ca and Mg during the whole experimental period.

Study on Correlation Between Feed Protein Fractions and In situ Protein Degradation Rate (사료 단백질의 Fraction과 In situ 단백질 분해율의 상관관계에 관한 연구)

  • Lee, S.Y.;Chung, Y.S.;Song, J.Y.;Park, S.H.;Sung, H.G.;Kim, H.J.;Ko, J.Y.;Ha, Jong-Kyu
    • Journal of Animal Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.351-358
    • /
    • 2007
  • This experiment was conducted to determine correlation between in vitro protein fractions and in situ protein degradation rate with major dairy protein sources(soybean meal, corn gluten meal, cotton seed meal, kapok seed meal and perilla meal). Five protein fractions were obtained according to the Cornell Net Carbohydate and Protein System(CNCPS), and in situ protein degradation rates were determined by technique using nylon bags incubated for 0, 4, 8, 12 and 24hrs in the rumen of three Holstein steers. Fraction A was highest in kapok seed meal(14.6%) and lowest in corn gluten meal(0.6%) (P<0.05). The highest B1, B2 and B3 fractions were contained in soybean meal(8.27%), cotton seed meal(74%), and perilla meal(40%), respectively. Corn gluten meal was very high in fraction C. In situ protein degradation rate of soybean meal was 98%, highest among five protein sources, and corn gluten meal had the lowest rate at 28%. Correlation analysis showed that easily soluble fractions of both methods, in situ protein degradation rate and digestible protein fractions, and in situ protein degradation rate minus “a” and fraction B2+B3 were highly correlated. These results indicate that in vitro protein fractionation can be used in the estimation of in situ protein degradation.

Degradation of Aromatic Pollutants by UV Irradiation (UV조사에 의한 방향족오염물의 분해)

  • Min, Byoung-Chul;Kim, Jong-Hyang;Kim, Byung-Kwan
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.502-509
    • /
    • 1997
  • Aromatic pollutants(benzene, toluene, ethylbenzene and xylenes) were photodegraded by using a UV oxidation and the rates of degradation were investigated under various reaction conditions. Each of the solution containing 50 ppm benzene, 150 ppm ethylbenzene and 250 ppm xylenes was found UV-photodegraded over 90% in 1 hour of reaction time, wheras the only was 43 % degradation was obtained with 350 ppm toluene solution. A single component solution was more degradable than a mixed component solution and benzene was almost photodegraded at a pH 4.0, 6.4 and 10.0 after reaction time is 1 hr, ehtylbenzene was photodegraded about 92%(pH 4.0), 90%(pH 6.4) and 91%(pH 10.0), xylenes was photodegraded about 95%(pH 4.0), 90%(pH 6.4) and 92%(pH 10.0), but toluene was photodegraded about 80%(pH 4.0), 43%(pH 6.4) and 70%(pH 10.0), respectively. Kinetics studies show that the rate of decay in TOC(total organic carbon) were pseudo first-order rate except ethylbenzene, and then we could evaluate mineralization rate constants(k) of aromatics.

  • PDF

Early Stage Decomposition of Emergent Macrophytes (대형 수생식물의 초기 분해에 관한 연구)

  • Shin, Jin-Ho;Choi, Sang-Kyu;Yeon, Myung-Hun;Kim, Jeong-Myung;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.565-572
    • /
    • 2006
  • This study examined the decomposition of blades and culms of aquatic emergent plant species, Zizania latifolia, Phragmites communis and Typha angustata, which were the most frequent in Lake Paldang. The experiment was carried out from July to December, 2005 in fresh water of lake Paldang using litter bag method. The litter bags had 1.2 mm mesh size and were suspended at 1 m depth of water surface. Remaining mass of blades and culms of each species after 97 days was 21.2% and 22.6% of initial mass in Z. latifolia, 32.5% and 56.4% in P. communis and 44.7% and 38.1 % in T. angustata, respectively. The plant tissue having high N concentration and low C/N exhibited the faster decay rate than the others. However, the tissue of high content of lignin, cellulose, lignin:N, and cullulose:N showed a slow decomposition rate. Water temperature was the most effective environmental factor on the emergent macrophyte litter decomposition in aquatic ecosystems. According to the water temperature, DO, $NO_3^-$-N, and total phosphate concentration were changed in the linear way. The mass loss of plant tissue of emergent macrophytes showed positive relationship with P concentration in water. The experiments on the decomposition of the litter using different mesh sized litter bag did not show significant differences between them. The results suggest that the decomposition of emergent macrophytes in fresh water of lake Paldang, which showed features of lentic and lower part of a stream, was affected by microbial activities better than the micro-invertebrates such as shredders.