• Title/Summary/Keyword: 분할 학습

Search Result 899, Processing Time 0.027 seconds

Improved real-time power analysis attack using CPA and CNN

  • Kim, Ki-Hwan;Kim, HyunHo;Lee, Hoon Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • Correlation Power Analysis(CPA) is a sub-channel attack method that measures the detailed power consumption of attack target equipment equipped with cryptographic algorithms and guesses the secret key used in cryptographic algorithms with more than 90% probability. Since CPA performs analysis based on statistics, a large amount of data is necessarily required. Therefore, the CPA must measure power consumption for at least about 15 minutes for each attack. In this paper proposes a method of using a Convolutional Neural Network(CNN) capable of accumulating input data and predicting results to solve the data collection problem of CPA. By collecting and learning the power consumption of the target equipment in advance, entering any power consumption can immediately estimate the secret key, improving the computational speed and 96.7% of the secret key estimation accuracy.

Analysis of Algal Bloom Occurrence Characteristics Namyang Lake using Sentinel-2 MSI (Sentinel-2 MSI를 활용한 남양 간척담수호의 조류발생 특성 분석)

  • Wonjin Jang;Jinuk Kim;Jiwan Lee;Yongeun Park;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.56-56
    • /
    • 2023
  • 남양호는 농업용수 공급을 위해 건설된 하구 담수호로 과도한 영양물질 축적으로 인해 매년 여름 녹조류가 번성한다. 따라서 본 연구에서는 조류발생 특성을 분석하고자 식물성 플랑크톤 및 관련 분해 산물에 의해 고유 광학특성을 가지고 있는 Chlorophyll-a(Chl-a)의 추정을 통한 녹조 발생을 파악하고자 Sentinel-2 Multi Spectral Image(MSI)의 원격 반사율 광학 스펙트럼을 사용하였다. Chl-a 추정알고리즘 개발을 위하여 Sentinel-2 A, B의 교차 방문주기인 5일 간격에 맞추어 현장수질자료(2022년: 27회 2023년: 27회)를 측정하였다. Chl-a 농도는 EXO-YSI를이용하여 측정하였으며 해당기간동안 9.4 ~ 127.1 mg/L의 범위를 보였으며, Sentine-2 자료는 A, B자료에서 B1(443 nm) ~ B8A(865 nm)파장의 값을 기상조건(구름, 안개, 강수)을 고려하여 현장수질측정 위치에서 반사도를 추출하였다. 입력자료는 대기 및 방사영향을 고려해 반사도 간의 비율자료와 선행연구에서 활용된 반사도를 활용하였으며 알고리즘은 다중선형회귀분석(Multi Linear Regression Model)과 Random Forest를 활용하였다. MLR의 경우 결정계수(R2)가 학습 및 검증에서 각각 0.68, 0.59의 성능을 보였으며, RF의 경우 각각 0.94, 0.85의 성능을 보였다. 해당알고리즘으로 생성된 Chl-a 시공간농도 자료는 담수호내 조류발생 특성을 분석하고 효율적 조류관리 및 대처에 활용될 것으로 판단된다.

  • PDF

The Criticism of Scientific Identity of Moral Subject and It's Basic Problem (윤리교과교육의 학문적 정체성비판과 근본적 문제)

  • Chang, Young-Ran
    • The Journal of Korean Philosophical History
    • /
    • no.27
    • /
    • pp.387-415
    • /
    • 2009
  • The crisis of moral-ethical school subject is related to the scientific identity of moral education in Korean society. Because it's identity hasn't been established yet exactly. At past time 'National Ethics' included not only moral education, but also anti-Communist education and education of political ideology or propaganda. The scientific foundation of ethical education is on ethics, and it is a branch of philosophy. But to escape this fact, some scholars relating with ethical education claimed to need 'interdisciplinary approach' to ethical subject. As a result, they allowed other department to give their certificates. Futhermore it is at a crisis to be integrated into social subject. Philosophy as scientific origin of ethics has already not interdisciplinary character but the idea of integrated science. So there is no necessity for finding another scientific foundation. Now following the original goal of ethical education, they try to train the ability of moral judgement to solve various moral problems rationally, and to cultivate moral disposition that can practice the ideal and principles of life.

Sources separation of passive sonar array signal using recurrent neural network-based deep neural network with 3-D tensor (3-D 텐서와 recurrent neural network기반 심층신경망을 활용한 수동소나 다중 채널 신호분리 기술 개발)

  • Sangheon Lee;Dongku Jung;Jaesok Yu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.357-363
    • /
    • 2023
  • In underwater signal processing, separating individual signals from mixed signals has long been a challenge due to low signal quality. The common method using Short-time Fourier transform for spectrogram analysis has faced criticism for its complex parameter optimization and loss of phase data. We propose a Triple-path Recurrent Neural Network, based on the Dual-path Recurrent Neural Network's success in long time series signal processing, to handle three-dimensional tensors from multi-channel sensor input signals. By dividing input signals into short chunks and creating a 3D tensor, the method accounts for relationships within and between chunks and channels, enabling local and global feature learning. The proposed technique demonstrates improved Root Mean Square Error and Scale Invariant Signal to Noise Ratio compared to the existing method.

A Systematic Literature Review on Teaching Mathematical Word Problems for Elementary School Students with Disabilities (초등학교 장애학생 수학 문장제 문제 국내 연구 동향 및 질적지표에 의한 분석: 단일대상연구를 중심으로)

  • Park, Jiyoon;Kang, Sora
    • Education of Primary School Mathematics
    • /
    • v.26 no.1
    • /
    • pp.29-43
    • /
    • 2023
  • The purpose of this study was to synthesize intervention studies, which utilized single case experimental design, on teaching mathematical word problems for elementary school students with disabilities and evaluate each of their methodological rigor. The researchers reviewed all studies from 2000 to 2022 that involved teaching mathematical word problems to individuals with disabilities. A total of 12 studies was included for a final analysis. Most of the interventions were delivered by researchers for about 30-40 minutes per session to elementary school students with disabilities. Schema-based instruction, cognitive-metacognitive strategy, and technology-based instruction were used as intervention methods, and explicit instruction was mostly used in conjunction with them. On the other hand, the researchers found that none of research articles met quality indicators for single case experimental design according to Cook et al. (2015). Limitation and directions for future research were also discussed.

Radiation Prediction Based on Multi Deep Learning Model Using Weather Data and Weather Satellites Image (기상 데이터와 기상 위성 영상을 이용한 다중 딥러닝 모델 기반 일사량 예측)

  • Jae-Jung Kim;Yong-Hun You;Chang-Bok Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.569-575
    • /
    • 2021
  • Deep learning shows differences in prediction performance depending on data quality and model. This study uses various input data and multiple deep learning models to build an optimal deep learning model for predicting solar radiation, which has the most influence on power generation prediction. did. As the input data, the weather data of the Korea Meteorological Administration and the clairvoyant meteorological image were used by segmenting the image of the Korea Meteorological Agency. , comparative evaluation, and predicting solar radiation by constructing multiple deep learning models connecting the models with the best error rate in each model. As an experimental result, the RMSE of model A, which is a multiple deep learning model, was 0.0637, the RMSE of model B was 0.07062, and the RMSE of model C was 0.06052, so the error rate of model A and model C was better than that of a single model. In this study, the model that connected two or more models through experiments showed improved prediction rates and stable learning results.

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.

Sorghum Panicle Detection using YOLOv5 based on RGB Image Acquired by UAV System (무인기로 취득한 RGB 영상과 YOLOv5를 이용한 수수 이삭 탐지)

  • Min-Jun, Park;Chan-Seok, Ryu;Ye-Seong, Kang;Hye-Young, Song;Hyun-Chan, Baek;Ki-Su, Park;Eun-Ri, Kim;Jin-Ki, Park;Si-Hyeong, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.295-304
    • /
    • 2022
  • The purpose of this study is to detect the sorghum panicle using YOLOv5 based on RGB images acquired by a unmanned aerial vehicle (UAV) system. The high-resolution images acquired using the RGB camera mounted in the UAV on September 2, 2022 were split into 512×512 size for YOLOv5 analysis. Sorghum panicles were labeled as bounding boxes in the split image. 2,000images of 512×512 size were divided at a ratio of 6:2:2 and used to train, validate, and test the YOLOv5 model, respectively. When learning with YOLOv5s, which has the fewest parameters among YOLOv5 models, sorghum panicles were detected with mAP@50=0.845. In YOLOv5m with more parameters, sorghum panicles could be detected with mAP@50=0.844. Although the performance of the two models is similar, YOLOv5s ( 4 hours 35 minutes) has a faster training time than YOLOv5m (5 hours 15 minutes). Therefore, in terms of time cost, developing the YOLOv5s model was considered more efficient for detecting sorghum panicles. As an important step in predicting sorghum yield, a technique for detecting sorghum panicles using high-resolution RGB images and the YOLOv5 model was presented.

Implementation of Radiotherapy Educational Contents Using Virtual Reality (가상현실 기술을 활용한 방사선치료 교육 콘텐츠 제작 구현)

  • Kwon, Soon-Mu;Shim, Jae-Goo;Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.409-415
    • /
    • 2018
  • The development of smart devices has brought about significant changes in daily life and one of the most significant changes is the virtual reality zone. Virtual reality is a technology that creates the illusion that a 3D high-resolution image has already been created using a display device just like it does in itself. Unrealized subjects are forced to rely on audiovisual materials, resulting in a decline in the concentration of practices and the quality of classes. It used virtual reality to develop effective teaching materials for radiology students. In order to produce a video clip bridge using virtual reality, a radiology clinic was selected to conduct two exposures from July to September 2017. The video was produced taking into account the radiology and work flow chart and filming was carried out in two separate locations : in the computerized tomography unit and in the LINAC room. Prior to filming the scenario and the filming route were checked in advance to facilitate editing of the video. Modeling and mapping was performed in a PC environment using the Window XP operating system. Using two leading virtual reality camera Gopro Hero, CC pixels were produced using a 4K UHD, Adobe, followed by an 8 megapixel resolution of $3,840{\times}2,160/4,096{\times}2,160$. Total regeneration time was performed in about 5 minutes during the production of using virtual reality to prevent vomiting and dizziness. Currently developed virtual reality radiation and educational contents are being used to secure the market and extend the promotion process to be used by various institutions. The researchers will investigate the satisfaction level of radiation and educational contents using virtual reality and carry out supplementary tasks depending on the results.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF