• 제목/요약/키워드: 분할 학습

검색결과 899건 처리시간 0.028초

속성분할이 없는 향상된 협력학습 방법 (An Improved Co-training Method without Feature Split)

  • 이창환;이소민
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권10호
    • /
    • pp.1259-1265
    • /
    • 2004
  • 분류학습에서 높은 정확도를 유지하기 위해서는 충분한 분류 데이타가 필요하게 되는데 분류 데이타는 미 분류 데이타보다 생성하기가 어려운 경우가 많다. 따라서 미 분류 데이타를 활용하여 분류의 정확도를 향상시키는 것은 큰 효용성을 가지며 이러한 미 분류 데이타를 활용하는 대표적인 학습방법 중의 하나는 협력학습(co-training) 알고리즘이다. 이는 데이타를 두 개의 독립적인 속성그룹으로 나누어 두개의 분류자로 학습한 후 미 분류 데이타를 분류하고 그중 가장 신뢰성이 높은 데이타를 분류 데이터에 포함하고 이를 반복하는 학습모델이다. 하지만 이 방법은 전체 데이타의 속성을 독립적인 두개의 집합으로 분할하여야하는 제약이 있다. 따라서 본 연구에서는 이와 같은 문제점을 개선하여 보통의 데이터베이스에 적용시킬 수 있는 새로운 협력학습방법을 제시 하고자한다. 즉. 두 개의 독립적인 속성 그룹으로 나누는 가정을 따르지 않고 전체 속성을 사용할 수 있으며 두 개 이상의 분류자를 사용하는 새로운 협력학습방법을 제안하였다.

한국어 문법 오류 교정 모델을 위한 문장 단위 디노이징 학습법 (Sentence Unit De-noising Training Method for Korean Grammar Error Correction Model)

  • 김훈래;김윤수;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.507-511
    • /
    • 2022
  • 문법 교정 모델은 입력된 텍스트에 존재하는 문법 오류를 탐지하여 이를 문법적으로 옳게 고치는 작업을 수행하며, 학습자에게 더 나은 학습 경험을 제공하기 위해 높은 정확도와 재현율을 필요로 한다. 이를 위해 최근 연구에서는 문단 단위 사전 학습을 완료한 모델을 맞춤법 교정 데이터셋으로 미세 조정하여 사용한다. 하지만 본 연구에서는 기존 사전 학습 방법이 문법 교정에 적합하지 않다고 판단하여 문단 단위 데이터셋을 문장 단위로 나눈 뒤 각 문장에 G2P 노이즈와 편집거리 기반 노이즈를 추가한 데이터셋을 제작하였다. 그리고 문단 단위 사전 학습한 모델에 해당 데이터셋으로 문장 단위 디노이징 사전 학습을 추가했고, 그 결과 성능이 향상되었다. 노이즈 없이 문장 단위로 분할된 데이터셋을 사용하여 디노이징 사전 학습한 모델을 통해 문장 단위 분할의 효과를 검증하고자 했고, 디노이징 사전 학습하지 않은 기존 모델보다 성능이 향상되는 것을 확인하였다. 또한 둘 중 하나의 노이즈만을 사용하여 디노이징 사전 학습한 두 모델의 성능이 큰 차이를 보이지 않는 것을 통해 인공적인 무작위 편집거리 노이즈만을 사용한 모델이 언어학적 지식이 필요한 G2P 노이즈만을 사용한 모델에 필적하는 성능을 보일 수 있다는 것을 확인할 수 있었다.

  • PDF

동적 분할 평균을 이용한 새로운 메모리 기반 학습기법 (A New Memory-based Learning using Dynamic Partition Averaging)

  • 이형일
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.456-462
    • /
    • 2008
  • 분류란 새로운 자료를 주어진 클래스 중의 하나로 구분하는 것으로 가장 일반적으로 사용되는 데이터마이닝 기법 중의 하나이다. 그중 메모리기반 추론(MBR : Memory-Based Reasoning)은 추론 규칙 없이 특징들의 최초의 벡터 형태에 의해 표현된 학습패턴을 단순히 저장한다. 그리고 분류 시에 새로운 자료가 메모리에 저장된 학습패턴들과의 거리를 계산하여 가장 가까운 거리에 있는 학습패턴의 클래스로 분류하는 기법이다. MBR 기법에서 학습패턴이 커지면 저장에 필요한 메모리의 크기도 커질 뿐만 아니라 추론을 위한 계산도 많아지는 문제점을 가지고 있다. 이러한 문제를 해결하기 위한 대표적인 방법으로 초월평면을 이용하는 NGE 이론과 대표패턴을 추출하여 학습하는 FPA 기법과 RPA 기법 등을 들을 수 있다. 본 논문에서는 학습패턴 공간을 GINI-Index값을 이용하여 일련의 최적 분할점을 찾아 가변크기로 분할하는 동적분할평균(DPA : Dynamic Partition Averaging)기법을 제안하였다. 제안한 기법의 성능을 검증하기 위하여 MBR기법 중 널리 사용되는 k-NN 기법과 비교하였다. 제안한 기법이 k-NN기법에 비해 대표패턴 개수는 줄이고 분류성능은 유사하게 유지시킨 것을 보여주었다. 또한, 제안한 기법은 NGE 이론을 구현한 EACH 시스템과 대표패턴 기법인 FPA기법과 RPA기법 등과 비교하여 탁월한 분류 성능을 보여주었다.

퍼지소속도를 이용한 얼굴 영상 분할

  • 이창수;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.69-72
    • /
    • 2000
  • 본 논문에서는 디지털 이미지 안에서의 얼굴 영상 분할을 위해서 데이터로부터 얼굴 영상과 배경 영상의 소속도(membership degree)를 학습시켜 구한다. 그리고 입력 이미지의 각 픽셀 값에 해당하는 소속도를 이용하여 얼굴 영상의 분할을 수행한다. 실험에서는 8-bit 그레이 스케일 영상의 ORL Database를 이용하였다.

  • PDF

한국어 대어휘 음성DB를 이용한 HM-Net 음성인식 시스템의 성능평가 (Performance Evaluation of HM-Net Speech Recognition System using Korea Large Vocabulary Speech DB)

  • 오세진;김광동;노덕규;송민규;김범국;황철준;정현열
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2443-2446
    • /
    • 2003
  • 본 논문에서는 한국전자통신연구원에서 제공된 대어휘 음성DB를 이용하여 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다 HM-Net은 PDT-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행한다. 이러한 상태분할을 수행하여 파라미터를 공유하게 되며 최적인 모델 네트워크를 작성하게 된다. 대어휘 음성데이터를 이용하여 음향모델을 작성하고 인식실험을 수행한 결과, 100명의 100단어와 60문장에 대해 평균 97.5%, 96.7%의 인식률을 보였다.

  • PDF

영역 분할 기반 심층 신경망을 활용한 소아 RDS 판별 방법 (Pediatric RDS classification method employing segmentation-based deep learning network)

  • 김지영;강재하;최해철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1181-1183
    • /
    • 2022
  • 신생아 호흡곤란증후군(RDS, Respiratory Distress Syndrome)은 미숙아 사망의 주된 원인 중 하나이며, 이 질병은 빠른 진단과 치료가 필요하다. 소아의 x-ray 영상을 시각적으로 분석하여 RDS 의 판별을 하고 있으나, 이는 전문의의 주관적인 판단에 의지하기 때문에 상당한 시간적 비용과 인력이 소모된다. 이에 따라, 본 논문에서는 전문의의 진단을 보조하기 위해 심층 신경망을 활용한 소아 RDS/nonRDS 판별 방법을 제안한다. 소아 전신 X-ray 영상에 폐 영역 분할을 적용한 데이터 세트와 증강방법으로 추가한 데이터 세트를 구축하며, RDS 판별 성능을 높이기 위해 ImageNet 으로 사전학습된 DenseNet 판별 모델에 대해 구축된 데이터 세트로 추가 미세조정 학습을 수행한다. 추론 시 입력 X-ray 영상에 대해 MSRF-Net 으로 분할된 폐 영역을 얻고 이를 DenseNet 판별 모델에 적용하여 RDS 를 진단한다. 실험결과, 데이터 증강과 폐 영역을 분할을 적용한 판별 방법이 소아전신 X-ray 데이터 세트만을 사용하는 것과 비교하여 3.9%의 성능향상을 보였다.

  • PDF

지하구조물 콘크리트 균열 탐지를 위한 semi-supervised 의미론적 분할 기반의 적대적 학습 기법 연구 (Adversarial learning for underground structure concrete crack detection based on semi­supervised semantic segmentation)

  • 심승보;최상일;공석민;이성원
    • 한국터널지하공간학회 논문집
    • /
    • 제22권5호
    • /
    • pp.515-528
    • /
    • 2020
  • 통상적으로 콘크리트 지하 구조물은 수십 년 이상 사용할 수 있도록 설계되지만 최근 들어 구조물 중 상당수가 당초의 기대 수명에 근접하고 있는 실정이다. 그 결과 구조물 고유의 기능이 상실되고 다양한 문제가 야기될 수 있어 신속한점검과 보수가 요구되고 있다. 이를 위해 지금까지는 지하 구조물 유지관리를 위하여 인력 기반의 점검과 보수가 진행되었으나 최근에는 인공지능과 영상 기술의 융합을 통한 객관적인 점검 기술 개발이 활발하게 이루어지고 있다. 특히 딥러닝을 활용한 영상 인식 기술을 적용하여 지도학습 기반의 콘크리트 균열 탐지 알고리즘 개발에 관한 연구가 다양하게 진행되고 있다. 이러한 연구들은 대부분 지도학습 형태 영상 인식 기술로 많은 양의 데이터를 바탕으로 개발이 되는데, 그 중에도 많은 수의 라벨 영상(Label image)이 요구된다. 이를 확보하기 위해서는 현실적으로 많은 시간과 노동력이 필요한 실정이다. 본 논문에서는 이와 같은 문제를 개선하고자 적대적 학습 기법을 적용하여 균열 영역 탐지 정확도를 평균적으로 0.25% 향상시키는 방법을 기술하고자 한다. 이 적대적 학습은 분할(Segmentation) 신경망과 판별자(Discriminator) 신경망으로 구성되어 있고, 가상의 라벨 영상을 경쟁적인 구조로 생성하여 인식 성능을 높이는 알고리즘이다. 본 논문에서는 이 같은 방법을 활용하여 효율적인 심층 신경망 학습 방법을 제시하였고, 향후에 정확한 균열 탐지에 활용될 것으로 기대한다.

적응형 재귀 분할 평균법을 이용한 메모리기반 추론 알고리즘 (A Memory-based Reasoning Algorithm using Adaptive Recursive Partition Averaging Method)

  • 이형일;최학윤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.478-487
    • /
    • 2004
  • 메모리 기반 추론에서 기억공간의 효율적인 사용과 분류성능의 향상을 위하여 제안되었던 RPA(Recursive Partition Averaging)알고리즘은 대상 패턴 공간을 분할 한 후 대표 패턴을 추출하여 분류 기준 패턴으로 사용한다. 이 기법은 메모리 사용 효율과 분류 성능 면에서 우수한 결과를 보였지만, 분할 종료 조건과 대표패턴의 추출 방법이 분류 성능 저하의 원인이 되는 단점을 가지고 있었다. 여기에서는 기존 RPA의 단점을 보안한 ARPA(Adaptive RPA) 알고리즘을 제안한다. 제안된 알고리즘은 패턴 공간의 분할 종료 조건으로 특징별 최빈 패턴 구간(FPD: Feature-based population densimeter)추출 알고리즘을 사용하며, 학습 결과 패턴의 생성을 대표패턴 추출기법 대신 최빈 패턴 구간을 이용하여 생성한 최적초월평면(OH: Optimized Hyperrectangle)을 사용한다. 제안된 알고리즘은 k-NN 분류기에서 필요로 하는 메모리 공간의 40%정도를 사용하며, 분류에 있어서도 RPA보다 우수한 인식 성능을 보이고 있다. 또한 저장된 패턴의 감소로 인하여, 실제 분류에 소요되는 시간 비교에 있어서도 k-NN보다 월등히 우수한 성능을 보이고 있다.

운율구 추출 및 음소 지속 시간의 트리 기반 모델링 (Tree-based Modeling of Prosodic Phrasing and Segmental Duration)

  • 이상호;오영환
    • 한국음향학회지
    • /
    • 제17권6호
    • /
    • pp.43-53
    • /
    • 1998
  • 본 논문에서는 한국어 TTS시스템을 위한 운율구 추출, 운율구 사이의 휴지 기간, 음소의 지속 시간 모델링 방법을 설명한다. 실험을 위해 여러 장르로 구성된 400문장을 선 정하고, 이를 전문 여성 아나운서가 발성하였다. 녹음된 음성 신호에 대해 음소 및 운율구 경계를 결정하고, 문장에 대해서는 형태소 분석, 발음표기 변환, 구문 분석을 수행하였다. 400문장(약33분) 중 240문장(약20분)을 이용하여 결정 트리 및 회귀 트리를 학습시킨 후, 160분장(약13분)에 대해 실험하였다. 운율 모델링을 위한 특징들이 제안되었고, 학습된 트리 들을 해석함으로써 특징들의 유효성이 평가되었다. 실험 문장에 대해 운율구 경계의 유무를 결정하는 결정 트리의 오류율은 14.46%이었고, 운율구 사이의 휴지 기간과 음소 지속 시간 을 예측하기 위한 회귀 트리들의 평균 제곱 오류근(RMSE)이 각각 132msec, 22msec이었다. 수집된 모든 자료(400문장)로 학습한 결과, 운율구 경계 결정 오류율, 휴지 기간 및 지속시 간 RMSE의 10-fold cross-validation 추정치가 각각 13.77%, 127.91msec, 21.54msec이었다.

  • PDF

모바일 라이프 특이성 추론을 위한 베이지안 확률 모델의 자동 학습 (Automatic Learning of Bayesian Probabilistic Model for Mobile Life Landmark Reasoning)

  • 황금성;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.362-366
    • /
    • 2007
  • 다양한 기능과 센서를 탑재한 최신 모바일 디바이스는 사용자의 위치, 전화기록, SMS, 사진, 동영상 등 사용자에 관한 다양한 정보를 지속적으로 수집할 수 있기 때문에 개인의 생활을 이해하고 다양한 서비스를 제공할 수 있는 가능성을 가지고 있다. 하지만, 모바일 장치의 성능 제약 및 환경 불확실성으로 인해 아직까지 많은 연구 과제들이 남아 있다. 본 논문에서는 이러한 모바일 환경의 문제를 극복하기 위해 베이지안 네트워크를 이용한 라이프 로그 분석 모델 및 자동 학습 방법을 제안한다. 제안하는 베이지안 네트워크 모델은 모듈화 되어서 계산량은 감소되었으며, 자동 학습 방법을 통해 지속적인 업데이트가 가능하다. 이는 제안하는 방법이 복잡한 확률 모델을 자동으로 분할하는 방법과 분할된 상태에서의 유기적인 추론 방법을 포함하고 있기에 가능하다. 실험에서는 실제 모바일 장치에서 수집된 로그 데이터를 이용하여 제안하는 방법에 의한 실험 결과를 분석하고 분할을 통한 효율성 향상을 논의 한다.

  • PDF