• Title/Summary/Keyword: 분할주조법

Search Result 2, Processing Time 0.016 seconds

A Study on the Recreated Experiment and Casting Method of Ancient Iron Seated Buddha by Spilt Casting Method (분할주조법을 이용한 고대 철불의 재현실험 및 주조법 연구)

  • Park, June Yeong;Jung, Da Yeon;Han, Min Su;Lee, Joo Wan;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.38 no.3
    • /
    • pp.234-242
    • /
    • 2022
  • The study aimed to investigate the split casting method based on the recreation of the iron-seated Buddha (ISB) statue (number 1971) in the Chuncheon Museum. The statue was designed using three-dimensional scan data and reduced to half-size. Using the existing research results, the ISB statue was created by mold production and split casting. The mold was prepared by mixing sand and clay at a ratio of 3:4 and 1:3 on the outside and inside, respectively, and then casting was done. Various casting defects were observed in the ISB casting and similar shapes were seen. The casting defects included veining or finning, misrun, open or external shrinkage, surface or subsurface blowholes, surface pinholes, and shift. The microstructures were identified as branch-shaped dendrite and pearlite organizations, and black graphite was observed between the cementite organizations. The study findings may be relevant in exploring traditional casting and manufacturing techniques of ISB and may aid in the production of the original form of ISB.

Immersive Visualization of Casting Solidification by Mapping Geometric Model to Reconstructed Model of Numerical Simulation Result (주물 응고 수치해석 복원모델의 설계모델 매핑을 통한 몰입형 가시화)

  • Park, Ji-Young;Suh, Ji-Hyun;Kim, Sung-Hee;Rhee, Seon-Min;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.15A no.3
    • /
    • pp.141-149
    • /
    • 2008
  • In this research we present a novel method which combines and visualizes the design model and the FDM-based simulation result of solidification. Moreover we employ VR displays and visualize stereoscopic images to provide an effective analysis environment. First we reconstruct the solidification simulation result to a rectangular mesh model using a conventional simulation software. Then each point color of the reconstructed model represents a temperature value of its position. Next we map the two models by finding the nearest point of the reconstructed model for each point of the design model and then assign the point color of the design model as that of the reconstructed model. Before this mapping we apply mesh subdivision because the design model is composed of minimum number of points and that makes the point distribution of the design model not uniform compared with the reconstructed model. In this process the original shape is preserved in the manner that points are added to the mesh edge which length is longer than a predefined threshold value. The implemented system visualizes the solidification simulation data on the design model, which allows the user to understand the object geometry precisely. The immersive and realistic working environment constructed with use of VR display can support the user to discover the defect occurrence faster and more effectively.