This paper presents a modified entropy-based test of fit for the inverse Gaussian distribution. The test is based on the entropy difference of the unknown data-generating distribution and the inverse Gaussian distribution. The entropy difference estimator used as the test statistic is obtained by employing Vasicek's sample entropy as an entropy estimator for the data-generating distribution and the uniformly minimum variance unbiased estimator as an entropy estimator for the inverse Gaussian distribution. The critical values of the test statistic empirically determined are provided in a tabular form. Monte Carlo simulations are performed to compare the proposed test with the previous entropy-based test in terms of power.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.32
no.1
/
pp.26-38
/
2020
A statistical test was carried out on the IID (Independently and Identically Distributed) assumption of the AM (Annual Maxima) data used to estimate the design wave height. The test was divided into independence (randomness) test and homogeneity test, and each test was conducted on AM data of 210 and 310 stations in coastal and inner coastal grids in typhoon and non-typhoon (monsoon) conditions. As a result of the independence test, the rejection ratios of the test are in the range of 1.8~5.3% and 1.4~6.0% for the non-typhoon and typhoon data sets, respectively. On the other hand, in the distribution difference test of typhoon data and nontyphoon data, the same distribution hypothesis was found to be rejected in the range of 47~79% according to the test method for both coastal grid and inner coastal grid. Therefore, in estimating design wave height by extreme value analysis, the estimation process by dividing the typhoon and non-typhoon data is appropriate.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.412-412
/
2017
강우빈도해석을 위해서는 확률분포선정이 우선적으로 이루어져야 한다. 우리나라에서는 사용상의 편리상, 기존 해석결과와의 연속성 등을 이유로 Gumbel 확률분포가 가장 일반적으로 활용되고 있다. 그러나, 분포형 선정에 따른 확률강수량의 차이가 크게 발생한다는 점에서 단순히 해석상의 편리성을 기준으로 분포형 선정이 이루어지는 것은 바람직하지 않다. 특히, 우리나라에서 강우빈도해석 시 분포형 선정은 형식적인 수준에 그치고 있으며, 주로 KS검정, 검정 등 적합도 검정을 통해 고려된 분포형의 통계적 유의성만을 평가하고 있다. 그러나, 최적 분포형 선정이라는 관점에서 이러한 유의성 검정보다는 정량적인 지표를 기준으로 확률분포형 선정이 이루어지는 것이 적합할 것으로 판단된다. 즉, 자료의 설명력이 가장 우수한 분포를 정량적 지표를 기준으로 추정하는 것이 수문통계학적으로 적합성을 갖는다. 이러한 점에서 본 연구에서는 우도함수, BIC 및 AIC를 기준으로 우리나라 주요 강수지점에서 대해서 최적 분포형을 선정하고, 기존 Gumbel 분포를 기준으로 산정된 확률강수량과의 양적차이를 평가해보고자 한다.
Communications for Statistical Applications and Methods
/
v.4
no.2
/
pp.533-540
/
1997
일반화 감마분포(generalized gamma distribution)에서 지표모수(index parameter)에 대한 추론은 생존시간(lifetime)과 관련한 모형의 선택문제에서 매우 중요하다. 이에 대한 정확한(exact) 추론법은 알려져 있지 않다. 본 연구에서는 이에 대한 점근적(asymptotic) 검정법으로 소표본에서도 우도비 검정에 비해 효율이 뛰어난 Bartlett 검정을 제안하고, 이의 요율적 수행을 위한 대체 모형으로 부터의 누율계산(cumulant computation) 법을 제시하였다. 또한 실제자료에 대해 본 논문에서 제시한 누율계산과정을 이용하여 Bartlett 검정을 실시한 결과 기존의 우도비 검정과는 상당히 큰 차이가 남을 확인하였다. 따라서 모형의 선택 등의 문제에서 제안된 방법은 소표본의 경우에 더욱 효율적이라 할 수 있다.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.169-173
/
2006
일반적으로 확률수문량을 산정하기 위해서는 수문자료에 대해 빈도해석을 실시한 후 확률수문량을 산정하게 된다. 재현기간이 커질수록 확률분포형에 따라 확률수문량의 값은 많은 차이를 나타내므로 적정 확률분포형의 선정은 매우 중요하다고 할 수 있다. 적정 확률분포형의 선정은 객관적인 기준에 의해 이루어져야 하나, 적정 확률분포형의 선정에 있어 명확한 기준이 마련되어 있지 않아 실무에서 확률수문량을 산정할 때 많은 어려움을 겪고 있는 실정이다. 따라서 본 연구에서는 적정 확률분포형의 선정기준으로 제시되어 있는 검정통계량을 이용한 방법의 적용성을 비교 검토하고자 한다. 이를 위해 우리나라에서 널리 사용되고 있는 Gumbel, GEV 분포형과 Weibull, Generalized logistic 분포형을 선택하고 각각의 분포형에 대해 자료의 크기별 모의를 통해 자료를 발생시킨 후 빈도해석을 수행하고, 적합도 검정 단계에서 산출되는 검정통계량을 비교하여 적정 확률분포형을 선정하여 적용성을 검토하고자 한다. 결과적으로 자료 발생에 이용된 분포형과는 관계없이 자료수가 작을수록 2변수 gamma, 자료수가 많을수록 5변수 Wakeby가 제일 많이 선정되는 것으로 나타났으며, Gumbel, GEV, generalized logistic 분포형의 경우는 대체로 자료의 수가 많아질수록 선정되는 빈도가 많은 것으로 나타났다.
Journal of the Korean Data and Information Science Society
/
v.11
no.2
/
pp.269-277
/
2000
We propose the Bayesian testing for the equality of two log-normal population means. Specifically we use the intrinsic Bayes factors suggested by Berger and Perichi (1996, 1998) based on the noninformative priors for the parameters. In order to investigate the usefulness of the proposed Bayesian testing procedures, we compare it with classical tests via both real data analysis and simulation.
The multivariate empirical distribution function could be defined when its distribution function can be estimated. It is known that bivariate empirical distribution functions could be visualized by using Step plot and Quantile plot. In this paper, the multivariate empirical distribution plot is proposed to represent the multivariate empirical distribution function on the unit square. Based on many kinds of empirical distribution plots corresponding to various multivariate normal distributions and other specific distributions, it is found that the empirical distribution plot also depends sensitively on its distribution function and correlation coefficients. Hence, we could suggest five goodness-of-fit test statistics. These critical values are obtained by Monte Carlo simulation. We explore that these critical values are not much different from those in text books. Therefore, we may conclude that the proposed test statistics in this work would be used with known critical values with ease.
The test statistic in ANOVA tests has a single or doubly noncentral F distribution and the noncentral F distribution is applied to the calculation of the power functions of tests of general linear hypotheses. Although various approximations of noncentral F distribution are suggested, they are troublesome to compute. In this paper, the calculation of noncentral F distribution is applied to the neural network theory, to solve the computation problem. The neural network consists of the multi-layer perceptron structure and learning process has the algorithm of the backpropagation. Using fables and figs, comparisons are made between the results obtained by neural network theory and the Patnaik's values. Regarding of accuracy and calculation, the results by neural network are efficient than the Patnaik's values.
A two sample chi-square test is introduced for testing the equality of the distributions of two populations when observations are subject to random censorship. The statistic is appropriate in testing problems where a two-sided alternative is of interest. Under the null hypothesis, the asymptotic distribution of the statistic is a chi-square distribution. We obtain two types of chi-square statistics ; one as a nonnegative definite quadratic form in difference of observed cell probabilities based on the product-limit estimators, the other one as a summation form. Data pertaining to a cancer chemotheray experiment are examined with these statistics.
Journal of the Korean Data and Information Science Society
/
v.25
no.6
/
pp.1195-1205
/
2014
Compared with single design, powers of rank transformed statistic for testing main and interaction effects for $2{\times}2$ factorial in $4{\times}4$ latin square design are rapidly increased as effect size and replication size are increased. In general powers of rank transformed statistic are superior without regard to the diversified effect composition and the type of error distributions as nontesting factors are few and effect size are small. Powers of rank transformed statistic show much higher level than those of parametric statistic in exponential and double exponential distributions. Further powers of rank transformed statistic are very similar with those of parametric statistic in normal and uniform distributions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.