• Title/Summary/Keyword: 분자 유전학

Search Result 287, Processing Time 0.026 seconds

ChIP-seq Library Preparation and NGS Data Analysis Using the Galaxy Platform (ChIP-seq 라이브러리 제작 및 Galaxy 플랫폼을 이용한 NGS 데이터 분석)

  • Kang, Yujin;Kang, Jin;Kim, Yea Woon;Kim, AeRi
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.410-417
    • /
    • 2021
  • Next-generation sequencing (NGS) is a high-throughput technique for sequencing large numbers of DNA fragments that are prepared from a genome. This sequencing technique has been used to elucidate whole genome sequences of living organisms and to analyze complementary DNA (cDNA) or chromatin immunoprecipitated DNA (ChIPed DNA) at the genome level. After NGS, the use of proper tools is important for processing and analyzing data with reasonable parameters. However, handling large-scale sequencing data and programing for data analysis can be difficult. The Galaxy platform, a public web service system, provides many different tools for NGS data analysis, and it allows researchers to analyze their data on a web browser with no deep knowledge about bioinformatics and/or programing. In this study, we explain the procedure for preparing chromatin immunoprecipitation-sequencing (ChIP-seq) libraries and steps for analyzing ChIP-seq data using the Galaxy platform. The data analysis steps include the NGS data upload to Galaxy, quality check of the NGS data, premapping processes, read mapping, the post-mapping process, peak-calling and visualization by window view, heatmaps, average profile, and correlation analysis. Analysis of our histone H3K4me1 ChIP-seq data in K562 cells shows that it correlates with public data. Thus, NGS data analysis using the Galaxy platform can provide an easy approach to bioinformatics.

Rediscovery of haploid breeding in the genomics era (유전체 시대에 반수체 육종의 재발견)

  • Lee, Seulki;Kim, Jung Sun;Kang, Sang-Ho;Sohn, Seong-Han;Won, So Youn
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.12-20
    • /
    • 2016
  • Advances in DNA sequencing technologies have contributed to revolutionary understanding of many fundamental biological processes. With unprecedented cost-effective and high-throughput sequencing, a single laboratory can afford to de novo sequence the whole genome for species of interest. In addition, population genetic studies have been remarkably accelerated by numerous molecular markers identified from unbiased genome-wide sequences of population samples. As sequencing technologies have evolved very rapidly, acquiring appropriate individual plants or populations is a major bottleneck in plant research considering the complex nature of plant genome, such as heterozygosity, repetitiveness, and polyploidy. This challenge could be overcome by the old but effective method known as haploid induction. Haploid plants containing half of their sporophytic chromosomes can be rapidly generated mainly by culturing gametophytic cells such as ovules or pollens. Subsequent chromosome doubling in haploid plants can generate stable doubled haploid (DH) with perfect homozygosity. Here, classical methodology to generate and identify haploid plants or DH are summarized. In addition, haploid induction by epigenetic regulation of centromeric histone is explained. Furthermore, the utilization of haploid plant in the genomics era is discussed in the aspect of genome sequencing project and population genetic studies.

The spectrum of 5p deletion in Korean 20 patients with Cri du chat syndrome (한국인 묘성증후군 20명 환자에서의 5p 결실 양상 분석)

  • Park, Sang-Jin;Kim, Sook-Ryung;Baek, Kum-Nyeo;Yoon, Joon-No;Jeong, Eun-Jeong;Kown, Ji-Eun;Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.4 no.2
    • /
    • pp.133-141
    • /
    • 2007
  • Purpose : Cri-du-Chat syndrome (CdCs) is a rare but clinically recongnizable condition with an estimated incidence of 1:50,000 live births. The clinical characteristics of the syndrome include severe psychomotor and mental retardation, microcephaly, hypertelorism, hypotonia, and slow growth. Also the size of the chromosome 5p deletion ranges were known from the region 5p13 to the terminal region. In this study, we report the spectrum of 5p deletion in Korean 20 pts. with CdCs and genotype-phenotype associations in CdCs. Methods : In order to delineate genotype-phenotype correlation, molecular cytogenetic studies including GTG banding and clinical characterization were performed on Korean 20 pts with CdCs including parents. CGH array and Fluorescence in situ hybridization (FISH) analysis were used to confirm a terminal deletion karyotype and map more precisely the location of the deletion breakpoint. Results : Molecular analysis of the spectrum of 5p deletion revealed 9 pts (45%) with a del (5)(p14), 7 pts. (35%) a del (5)(p13), 3 pts. (15%) a del (5)(p15.1) and 1 pt. (5%) a del (5)(p15.2) in 20 pts with CdCs. 4(20%)pts were identified to have additional chromosome abnormalites of deficiency and duplication involving chromosomes of 6, 8, 18, & 22. Parental study identified 3 familial case (2 paternal and 1 maternal origin) showing parents being a balanced translocation carrier. And the comparison study of the deletion break points among these 20 pts. with their phenotype has showed the varying clinical pheno-types in the CdCs critical region. Conclusion : The characterization of 5p deletion including parental study may help to delineate the genotypephenotype correlation in CdCs. Also these molecular cytogenetic analyses will be able to offer better information for accurate genetic diagnosis in CdCs and further make possible useful genetic counseling in pts. and family.

  • PDF

Agronomic and Genetic Evaluation on a Dull Mutant Line Derived from the Sodium Azide Treated 'Namil', a Non-Glutinous Japonica Rice (남일벼 돌연변이 유래 중간찰 계통의 작물학적 특성 및 배유특성 지배유전자위 표지)

  • Chun, Jae-Buhm;Jeung, Ji-Ung;Cho, Seong-Woo;Kim, Woo-Jae;Ha, Ki-Young;Kang, Kyung-Ho;Ko, Jae-Kwon;Kim, Hyun-Soon;Kim, Bo-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.4
    • /
    • pp.448-457
    • /
    • 2015
  • Developing rice lines with various amylose contents is necessary to diverse usages of rice in terms of raw materials for processed food production, and thereby to promote rice consumption in Korea. A rice mutant line, 'Namil(SA)-dull1' was established through sodium azide mutagenesis on 'Namil', a non-glutinous Korean Japonica rice cultivar. Namil(SA)-dull1' had dull endosperm characteristics and the evaluated amylose content was 12.2%. A total of 94 F2 progenies from a cross between 'Namil(SA)-dull1' and 'Milyang23', a non-glutinous Tongil-type rice cultivar, was used for genetic studies on the endosperm amylose content. Association analyses, between marker genotypes of 53 SSR anchor markers and evaluated amylose contents of each 94 F2:3 seeds, initially localized rice chromosome 6 as the harboring place for the modified allele(s) directing low amylose content of 'Namil(SA)-dull1'. By increasing SSR marker density on the putative chromosomal region followed by association analyses, the target region was narrowed down 0.94 Mbp segment, expanding from 28.95 Mbp to 29.89 Mbp, on rice chromosome 6 pseudomolecule. Among the SSR loci, RM7555 explained 84.2% of total variation of amylose contents in the $F_2$ population. Further physical mapping on the target region directing low amylose content of 'Namil(SA)-dull1' would increase the breeding efficiency in developing promising rice cultivars with various endosperm characteristics.

Phylogenetic Relationship and DNA Polymorphism of Boleophthalmus pectinirostris and Scartelaos gigas (Teleostei: Gobiidae) of Korea (한국산 짱뚱어(Boleophthalmus pectinirostris)와 남방짱뚱어(Scartelaos gigas) (Gobiidae)의 분자유전학적 계통연관과 DNA 다형화)

  • Choi, Ki Ho;Chung, Ee Yung;Park, Gab Man
    • Korean Journal of Ichthyology
    • /
    • v.25 no.3
    • /
    • pp.149-156
    • /
    • 2013
  • Phylogenetic relationships and DNA polymorphism among local populations of two Korean gobiidae species: Boleophthalmus pectinirostris and Scartelaos gigas were investigated based on 12S and 16S mitochondrial DNA and mitochondrial cytochrome b DNA sequences. DNA polymorphisms of B. pectinirostris between Suncheon and Gunsan populations were 100% identity from 434 bp segment of 12S rRNA gene and from 444 bp segment of mitochondrial cytochrome b genes, and 99.6% (2 bp different) identity from 484 bp segments of 16S rRNA genes. These results indicated the long period of geographic isolation between two populations of B. pectinirostris in Korea caused such high degrees of DNA polymorphisms. Based on the phylogenetic tree constructed from the two gobiid species in Korea, two genetically distinct groups of B. pectinirostris and S. gigas groups were recognized.

Variations of Complex Permittivity due to Water Content and Heavy Metal Contamination (함수비와 중금속 오염도에 따른 유전상수의 변화)

  • Oh Myoun-Hak;Kim Yong-Sung;Yoo Dong-Ju;Park Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.231-241
    • /
    • 2005
  • Laboratory experiments were performed to examine the effects of water content and to see if permittivity had sufficient sensitivity to identify subsurface contamination. Both real and imaginary permittivities of unsaturated sand were strongly governed by the volumetric water content. Especially, a linear relationship between real permittivity and volumetric water content was derived at high frequencies (MHz ranges). Heavy metals in pore fluid result in significant increases in the effective imaginary permittivity, due to ionic conduction, but decreases in the real permittivity arises due to the decreased orientational polarization of water molecules caused by hydration of ions. Clear increase in the effective imaginary permittivity with heavy metal concentration was found to be valuable in the application of electrical methods for detecting heavy metals in the subsurface. However, because the permittivity is primarily dependent on the volumetric water content of soil, pre-evaluation on the volumetric water content is required.

Temporal variation in the community structure of green tide forming macroalgae(Chlorophyta; genus Ulva) on the coast of Jeju Island, Korea based on DNA barcoding (DNA 바코드를 이용한 제주도 연안 파래대발생(green tide)을 형성하는 갈파래(genus Ulva) 군집구조 및 주요 종 구성의 시간적 변이)

  • Hye Jin Park;Seo Yeon Byeon;Sang Rul Park;Hyuk Je Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.464-476
    • /
    • 2022
  • In recent years, macroalgal bloom occurs frequently in coastal oceans worldwide. It might be attributed to accelerating climate change. "Green tide" events caused by proliferation of green macroalgae (Ulva spp.) not only damage the local economy, but also harm coastal environments. These nuisance events have become common across several coastal regions of continents. In Korea, green tide incidences are readily seen throughout the year along the coastlines of Jeju Island, particularly the northeastern coast, since the 2000s. Ulva species are notorious to be difficult for morphology-based species identification due to their high degrees of phenotypic plasticity. In this study, to investigate temporal variation in Ulva community structure on Jeju Island between 2015 and 2020, chloroplast barcode tufA gene was sequenced and phylogenetically analyzed for 152 specimens from 24 sites. We found that Ulva ohnoi and Ulva pertusa known to be originated from subtropical regions were the most predominant all year round, suggesting that these two species contributed the most to local green tides in this region. While U. pertusa was relatively stable in frequency during 2015 to 2020, U. ohnoi increased 16% in frequency in 2020 (36.84%), which might be associated with rising sea surface temperature from which U. ohnoi could benefit. Two species (Ulva flexuosa, Ulva procera) of origins of Europe should be continuously monitored. The findings of this study provide valuable information and molecular genetic data of genus Ulva occurring in southern coasts of Korea, which will help mitigate negative influences of green tide events on Korea coast.

Molecular epidemiological study of norovirus gastroenteritis outbreaks in Gyeonggi-Do from 2014 to 2015 (2014-2015년 경기지역 노로바이러스성 식중독의 분자역학적 특성분석)

  • Nam, Soo-Jung;Park, Po-Hyun;Bang, Sun-Jae;Huh, Jeong-Weon;Yun, Hee-Jeong;Park, Kwang-Hee;Yoon, Mi-Hye
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.24-30
    • /
    • 2018
  • Norovirus infection is a leading cause of nonbacterial gastroenteritis outbreaks. New variants of GII.4 have emerged approximately every 2~3 years and have caused norovirus gastroenteritis pandemics globally. In this study, analysis and molecular genetic characteristics of the norovirus gastroenteritis outbreaks 2,917 samples in Gyeonggi-Do from 2014 to 2015. As a result, 247 samples out of 2,917 samples are positive for norovirus. Norovirus molecular genetic characteristics of the GI 8 types (GI-1, 2, 3, 4, 5, 6, 12, 14), GII 10 types (GII - 2, 3, 4, 5, 6, 11, 12, 14, 16, 17). Genome sequences of isolated noroviruses were similar to those of new GII.17 Kawasaki 2014 variants with 96.6 identity, suggesting that these viruses were imported from overseas. 44% of virus incidence was originated from school meal service. Therefore, a continuous monitoring and school sanitation should be required for preventing a massive virus outbreak.

Melanogenesis Promotion by 3-Deazaneplanocin A, a Specific Inhibitor of S-Adenosylhomocysteine Hydrolase, in B16/F10 Melanoma Cells (B16/F10 흑색종 세포에서 S-Adenosylhomocysteine Hydrolase 의 선택적 저해제 3-Deazaneplanocin A 에 의한)

  • Hwang, Yun Jeong;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.107-121
    • /
    • 2021
  • Skin hypopigmentation, which is observed in albinism or vitiligo, occurs when melanin synthesis is decreased by genetic, epigenetic, and other factors. To identify drug candidates that can promote melanin synthesis in cells, we screened an epigenetic modulator library consisting of 141 cell-permeable, small molecule drugs. B16/F10 murine melanoma cells were treated with each drug at 0.1 𝜇M and melanin synthesis and cell viability were subsequently monitored. As a result, (-)-neplanocin A, 3-deazaneplanocin A (DZNep), and DZNep hydrochloride were found to increase cellular melanin synthesis without causing cytotoxicity. Because these three structurally related drugs exhibited similar dose-dependent effects on melanin synthesis and cell viability, DZNep was selected as a representative drug for additional experiments. DZNep increased intracellular melanin content and tyrosinase (TYR) activity. DZNep also induced the expression of TYR, tyrosinase-related protein 1 (TYRP1), and dopachrome tautomerase (DCT) at the mRNA and protein levels. DZNep also induced the mRNA and protein expression of microphthalmia-associated transcription factor (MITF), a key regulator of melanin synthesis. DZNep is a specific inhibitor of S-adenosylhomocysteine hydrolase and it caused the accumulation of S-adenosylhomocysteine that inhibits histone methyltransferases in cells. This study suggests that melanogenesis can be modulated by targeting S-adenosylhomocysteine hydrolase in certain cellular contexts.

Morphological Characteristics and Genetic Diversity Analysis of Cultivated Sancho (Zanthoxylum schinifolium) and Chopi (Zanthoxylum piperitum) in Korea (국내 재배지의 산초(Zanthoxylum schinifolium)와 초피(Zanthoxylum piperitum)의 형태학적 특성과 유전적 다양성)

  • Ryu, Jaihyunk;Choi, Hae-Sik;Lyu, Jae-il;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.29 no.5
    • /
    • pp.555-563
    • /
    • 2016
  • The morphological characteristics and genetic relationships among 32 germplasms of Zanthoxylum schinifolium and Zanthoxylum piperitum collected from two farms in Korea were investigated. The traits with the most variability were seed color, leaf size, and spine size. The intraspecific polymorphism of Z. schinifolium and Z. piperitum was 96.5% and 60.3%, respectively. The genetic diversity and Shannon’s information index values ranged from 0.11 to 0.33 and 0.19 to 0.50, with average values of 0.26 and 0.42, respectively. Two ISSR primers (UBC861 and UBC862) were able to distinguish the different species. The genetic similarity matrix (GSM) revealed variability among the accessions ranging from 0.116 to 0.816. The intraspecific GSM for Z. schinifolium and Z. piperitum was 0.177-0.780 and 0.250-0.816, respectively. The GSM findings indicate that Z. schinifolium and Z. piperitum accessions have high genetic diversity and possess germplasms qualifying as good genetic resources for cross breeding. The clustering analysis separated Z. schinifolium and Z. piperitum into independent groups, and all accessions could be classified into three categories. Z. Schinifolium var. nermis belonged to independent groups. Comparison of the clusters based on morphological analysis with those based on ISSR data resulted in an unclear pattern of division among the accessions. The study findings indicate that Z. schinifolium and Z. piperitum accessions have genetic diversity, and ISSR markers were useful for identifying Z. schinifolium and Z. piperitum.