• Title/Summary/Keyword: 분자 유전학

Search Result 283, Processing Time 0.025 seconds

Phylogeographic and population genetic study of a Korean endemic freshwater fish species, Zacco koreanus (한국 고유 담수어종 참갈겨니(Zacco koreanus) 개체군의 계통지리학 및 집단유전학 연구)

  • Kim, Yu Rim;Jang, Ji Eun;Choi, Hee-kyu;Lee, Hyuk Je
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.650-657
    • /
    • 2020
  • We conducted a phylogeographic analysis of Korean endemic Zacco koreanus populations inhabiting the East-flowing river (Gangneung Yeongokcheon; GY, Yangyang Namdaecheon; YN), the Han River (Seomgang; SG, Soksacheon; SS), and the Nakdong River(Gilancheon; GA) using the mitochondrial DNA cytochrome oxidase I (COI) gene (619 bp). Population genetic analysis was further performed to assess the population connectivity for the GY river where there is a large number of human-made artificial weirs with several fishways. The phylogeographic analysis revealed that while the populations of the East-flowing river and those of the Han River formed a monophyletic lineage, the Nakdong River individuals represented a distinct lineage with 3.7-4.2% (mean=4.0%) genetic distance from the other lineages. The population genetic analysis of the GY showed that a mid-stream population harbored relatively higher mitochondrial diversity relative to up- and down-stream populations, and there was no genetic differentiation between these three populations. The latter findings might suggest high genetic connectivity between the populations via genetic flow along the fishways. However, an analysis using faster-evolving genetic markers, such as microsatellites, is needed to confirm the findings of high population connectivity. Our study suggests the possibility of the presence of cryptic species in Z. koreanus in the Nakdong River basin. However, further study with more individual samples as well as additional markers or even more advanced genomic tools is required to test our hypothesis. Ecological or phenotypic analyses should be conducted to test whether the observed Nakdong River lineage represents a different or cryptic species, or simply hidden, but excessive, intraspecific diversity.

Rotational Diffusion of Rhodomine 6G Molecule -Effect of Dielectric Friction in Alcohol Solvents- (Rhodamine 6G 분자의 회전 확산 -알코올 용매에서의 유전 마찰 효과-)

  • 고동섭
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.338-346
    • /
    • 1993
  • The rotational reorientation times of rhodamine 6G molecule were measured using a time-correlated single photon counting method. To explain the deviation of observed rotational reorientation times in alcohol solvents from the prediction of hydrodynamic model, the contribution of dielectric friction was considered. And the values of transition dipole moments in ground and excited states were estimated through the dielectric friction and the static spectroscopic data.

  • PDF

Genetics of Hereditary Peripheral Neuropathies (유전성 말초신경병의 유전학)

  • Cho, Sun-Young;Choi, Byung-Ok
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.25-37
    • /
    • 2009
  • Hereditary peripheral neuropathies can be categorized as hereditary motor and sensory neuropathies (HMSN), hereditary motor neuropathies (HMN), and hereditary sensory neuropathies (HSN). HMSN, HMN, and HSN are further subdivided into several subtypes. Here, we review the most recent findings in the molecular diagnosis and therapeutic strategy for hereditary peripheral neuropathies. The products of genes associated with hereditary peripheral neuropathy phenotypes are important for neuronal structure maintenance, axonal transport, nerve signal transduction, and functions related to the cellular integrity. Identifying the molecular basis of hereditary peripheral neuropathy and studying the relevant genes and their functions is important to understand the pathophysiological mechanisms of these neurodegenerative disorders, as well as the processes involved in the normal development and function of the peripheral nervous system. These advances and the better understanding of the pathogenesis of peripheral neuropathies represent a challenge for the diagnoses and managements of hereditary peripheral neuropathy patients in developing future supportive and curative therapies.

  • PDF

Genomics and Molecular Markers for Major Cucurbitaceae Crops (주요 박과작물의 유전체 및 분자마커 연구 현황)

  • Park, Girim;Kim, Nahui;Park, Younghoon
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1059-1071
    • /
    • 2015
  • Watermelon and melon are economically important Cucurbitaceae crops. Recently, the development of molecular markers based on the construction of genetic linkage maps and detection of DNA sequence variants through next generation sequencing are essential as molecular breeding strategies for crop improvement that uses marker-assisted selection and backcrossing. In this paper, we intended to provide useful information for molecular breeding of watermelon and melon by analyzing the current status of international and domestic research efforts on genomics and molecular markers. Due to diverse genetic maps constructed and the reference genome sequencing completed in the past, DNA markers that are useful for selecting important traits including yield, fruit quality, and disease resistances have been reported and publicly available. To date, more than 16 genetic maps and loci and linked markers for more than 40 traits have reported for each watermelon and melon. Furthermore, the functional genes that are responsible for those traits are being continuously discovered by high-density genetic map and map-based cloning. In addition, whole genome resequencing of various germplasm is under progress based on the reference genome. Not only by the efforts for developing novel molecular markers, but application of public marker information currently available will greatly facilitate breeding process through genomics-assisted breeding.

DNA칩을 이용한 위암의 진단 및 예후 측정

  • Eom Won-Seok
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.11-18
    • /
    • 2006
  • 바이오칩의 대표 주자인 DNA 칩은 점차 분자생물학의 주요 도구로 인식되고 있다. 쓰임새 또한 다양해져 기초 생물학, 기능 유전체학 연구뿐만 아니라 임상 현장에서의 적용을 위한 연구가 활발히 진행되고 있다. 임상분야에서 최근 주목 받고 있는 분야가 DNA 칩을. 이용한 질병진단 및 예후 측정이다. 개별 환자 세포의 분자유전학적 상태는 DNA 칩의 유전체 프로파일링(genome-wide profiling)으로 상세히 파악될 수 있으므로, DNA 칩은 질병의 세부아형 진단, 약물에 대한 개인 민감도 측정, 정확한 예후 측정을 통한 환자의 세심한 관리 등 미래 의료의 핵심이라 할 수 있는 개인별 맞춤 치료(personalized medicare)를 가능하게 하는데 지대한 역할을 할 것으로 기대되고 있다. 특히 수많은 질병 중에서 현대인의 난치병으로 손꼽히는 암은 DNA 칩 분석의 주요 적용 대상이다. 암에 연관된 복잡한 메커니즘을 기존의 단일 표지자로 진단하는 데는 한계가 있기 때문에, DNA 칩을 이용해 질병의 특정 phenotype과 관련 있는 암의 특이 패턴을 전사체 수준에서 분석하여 새로운 형태의 분자유전학적 표지자(transcriptional molecular signature)를 발굴하는 것이다 본 발표에서는 이러한 연구에 쓰이는 DNA 칩 분석 방법들과 실제 위암 데이터에 적용한 사례에 대해 논의하고자 한다. 연세의대 암전이 연구센터의 17K cDNA 칩을 이용하였으며, 진단 및 예후 측정을 위한 여러 분석 방법을 수행하였다.

  • PDF

Understanding of Schizophrenia Based on the Study of Molecular Genetics (분자유전학을 통한 정신분열증의 이해)

  • Lee, Min-Soo;Kim, Pyo-Han
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.14-21
    • /
    • 1996
  • Molecular genetic approaches contribute to the understanding of the underlying genetic mechanism for schizophrenia. Currently genetic evidence rests on molecular genetic methods. However, the result are contradictory and somewhat confusing due to genetic heterogeneity, incomplete penetrance, misspecification of genetic model. It is expected that molecular genetics could provide key answers to the genetic cause of schizophrenia. The purpose of this article is to call attention of the readers to heterogeneity, linkage, association, basic molecular genetic methods and genetic markers and to the need far further research. It is the author's hope thai continuous research on the molecular genetics con provide clinicians with better understanding of the schizophrenia.

  • PDF

Exon Capture - Principle and Applications to Phylogenomics and Population Genomics of Fishes (엑손 포획 - 원리와 어류의 계통유전체학 및 집단유전체학으로의 응용)

  • Li, Chenhong
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.205-216
    • /
    • 2021
  • Phylogenetic reconstruction based on one locus or a few loci can be misleading due to gene-tree/species-tree discordance. Species delimitation and intraspecific studies also often suffered from low resolution because of insufficient statistic power when few loci were used. Exon capture method is one of the most efficient way to collect genome-scale data, which can significantly augment studies that aimed to investigate patterns and histories of organisms at both intraspecific and high level. Here, I showed the advancement of shifting from single-gene method to genomic approach and the benefit of applying exon capture method comparing to alternative genomic techniques. Then, I explained the principle of exon capture method as well as providing detailed recommendations for applying this method. Finally, I demonstrated exon capture method using two applications and discussed future perspectives of this technology.