• Title/Summary/Keyword: 분자 운동

Search Result 234, Processing Time 0.027 seconds

The Effects of Small Group Drawing in Learning the Particulate Nature of Matter (물질의 입자성에 대한 학습에서 소집단 그림 그리기의 효과)

  • Han, Jae-Young;Kim, Hun-Sik;Kim, Bo-Kyung;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.7
    • /
    • pp.721-727
    • /
    • 2005
  • This study investigated the effects of small group drawing in learning the concepts of particulate nature of matter. Three classes of seventh graders (N = 126) at a coed middle school were randomly assigned to a pair drawing group, an individualistic drawing group, and a control group. The students were taught the 'three states of matter' and 'motion of molecules' for eight class periods. Prior to these classes, student self-efficacy, learning motivation, and attitude toward science instruction were examined. After instruction, tests assessing achievement, conception, learning motivation, and attitude toward science instruction were administered. Two-way ANCOVA results revealed that scores of achievement and conception for the pair drawing group were significantly higher than those for the control group. However, scores of the three groups did not significantly differ in learning motivation and attitude toward science instruction. Furthermore, no significant interactions surfaced between instruction and the level of self-efficacy in all dependent variables.

Kinetics of Catalytic Reactions Occurring in a Small Reaction Volume (작은 반응 매질에서 일어나는 촉매 반응 속도에 관한 연구)

  • Kim, Jung-Han;Sung, Jae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.217-222
    • /
    • 2008
  • We investigate the kinetics of diffusion-influenced catalytic reactions occurring in small reaction volume. From a simple exact model study, we find that the reaction rate coefficient decreases with the size of reaction volume. The explicit expression for the average reaction rate constant is presented, which can be regarded as a generalization of well-known Collins-Kimball rate constant into the reactions occurring in a small reaction volume. It turns out that the traditional diffusion influenced reaction dynamics is followed by a single exponential relaxation phase with a rate constant dependent on the reaction volume for the catalytic reactions occurring in small reaction volumes.

Modeling of a Pervaporation Process for Concentrating Hydrogen Peroxide (과산화수소 농축을 위한 투과증발공정 모델링)

  • Nguyen, Huu Hieu;Lee, Sung Taek;Choi, Soo Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.560-564
    • /
    • 2011
  • The objective of this study is to propose a mathematical model for a pervaporation process for concentrating hydrogen peroxide. The process was developed by NASA, which consists of a shell and membrane tubes, where a liquid hydrogen peroxide solution flows in the shell, and a sweep gas flows in the tubes countercurrent to each other. The liquid retentate is concentrated as more water molecules permeate and evaporate through the membrane than hydrogen peroxide. For this process, a mathematical model has been developed in the form of a system of nonlinear partial differential algebraic equations based on a sorption-diffusion mechanism for permeation, an Arrhenius relationship for the temperature dependency of the permeate flux, and mass and momentum balances for the liquid concentrations and flows in the membrane module. The dynamic behavior of the concentration of hydrogen peroxide in the retentate side has been simulated by solving a simplified version of the proposed model, and the result is compared with the experimental data reported in the NASA patent.

Intercalation behavior study of ibuprofen/clay organic-inorganic nanocomposites as drug release system (약물 방출 시스템으로서 이부프로펜/클레이 유-무기 나노복합체의 층간삽입 거동 연구)

  • Choi, Bong-Seok;Kim, Dong-Hyun;Kim, Tae-Wan;Jin, Heoyng-Ho;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.240-245
    • /
    • 2011
  • This research focused on the intercalation behavior of recrystallized ibuprofen into clay as a sustained release drug carrier. The intercalation behaviors of ibuprofen were determined by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The basal spacing ($d_{001}$) of clay increased from 1.2 nm to 1.5 nm by ibuprofen molecules. The segmental motion effect of ibuprofen into the clay interlayer spacing also increased the thermal stability of the ibuprofen/clay nanocomposites. The in vitro drug release results of nanocomposites showed that ibuprofen was released from clay steadily.

The Influences of Computer-Assisted Instruction Emphasizing the Particulate Nature of Matter and Problem-Solving Strategy on High School Students' Learning in Chemistry (물질의 입자성과 문제 해결 전략을 강조한 컴퓨터 보조 수업이 고등학생들의 화학 학습에 미치는 효과)

  • Noh, Tae-Hee;Kim, Chang-Min;Cha, Jeong-Ho;Jeon, Kyung-Moon
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • This study examined the influences of computer-assisted instruction(CAl) upon high school students' conceptual understanding, algorithmic problem solving ability, learning motivation, and attitudes toward chemistry instruction. CAl programs were designed to supply animated molecular motions for emphasizing the particulate dynamic nature of matter and immediate feedbacks according to students' response types at each stage of four stage problem-solving strategy(understanding, planning, solving, and reviewing). The CAl and control groups (2 classes) were selected from a girls high school in Seoul, and taught about gas law for four class hours. Data analysis indicated that the students at the CAl group scored significantly higher than those at the control group in the tests on conceptual understanding and algorithmic problem solving ability. In addition, the students at the CAl group performed significantly better in the tests on the learning motivation and attitudes toward chemistry instruction.

  • PDF

Students' Understanding of the Analogies Used in Chemistry Education and the Limitations of Using Analogies (화학 교육에서 사용되는 비유에 대한 학생들의 이해도 및 비유 사용의 제한점)

  • Kwon, Hyeok-Soon;Choi, Eun-Kyu;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.2
    • /
    • pp.287-297
    • /
    • 2004
  • In this study, students' understanding of the analogies used for chemical concepts in science textbooks, misconceptions induced by the analogy, and the factors affecting conceptual understanding were investigated. In addition to the tests of field independency and logical thinking ability, tests of students' understanding of concepts and analogies on three states of matter, pressure-volume relation, molecular motion, and changing state depending upon energy were administered. The results revealed that half of the subjects understood the analogies differently from the textbook writers' intention and that students' conceptual understanding was significantly correlated with the degree of understanding on corresponding analogies, field independency, logical thinking ability, and prior achievement of science. The results of analyzing the direct and indirect effects of each variable on conceptual understanding showed that the direct effect of prior achievement was significant and that field independency and logical thinking ability had indirect effects through understanding of analogies and prior achievement of science. The limitations and implications of using analogies in science education were discussed on the basis of the results.

The Influences of Role-Playing Analogy in Chemistry concept Learning (화학 개념 학습에서 역할놀이 비유 활동의 효과)

  • Noh, Tae-Hee;Byun, Soon-Hwa;Jeon, Kyung-Moon;Kwon, Hyeok-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.3
    • /
    • pp.246-253
    • /
    • 2003
  • This study investigated the influences of role-playing analogy upon students' scientific conceptual understandings, application abilities, retentions of conception and application, and learning motivation. Four classes of 7th grade at a middle school in Seoul were assigned to control and treatment groups, and taught about 'motion of molecules' for 4 class hours. For the Treatment group, role-playing analogy instruction was used. The traditional instruction was used for the control group. Data analysis indicated that the scores of the treatment group were significantly higher than those of the control group in the tests on the conception, the retention of application, and the confidence. In the tests of the application, attention, and relevance, there were significant interactions between instruction and student' gender. Both female and male students in the treatment group scored significantly higher than those in the control group in the application test. In the case of attention and relevance tests, male students in the treatment group scored significantly higher than those in the control group. Educational implications are discussed.

Effects of Drag Models on the Hydrodynamics and Heat Transfer in a Conical Fluidized Bed Combustor (원추형 유동층 연소기의 수력학적 특성 및 열전달에 항력 모델이 미치는 영향에 대한 연구)

  • Kang, Seung Mo;Abdelmotalib, Hamada;Ko, Dong Guk;Park, Woe-Chul;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.861-869
    • /
    • 2015
  • In this study, wall to bed heat transfer and hydrodynamic characteristics in a conical fluidized bed combustor was investigated using computational fluid dynamics method. A two-fluid Eulerian-Eulerian model was used with applying the kinetic theory for granular flow(KTGF). The effects of the two drag models, Gidaspow and the Syamlal-O'Brien model, different inlet velocities($1.4U_{mf}{\sim}4U_{mf}$) and different particle sizes on the hydrodynamics and heat transfer were studied. The results showed that the hydrodynamic characteristics such as bed expansion ratio and pressure drop were not affected significantly by the drag models. But the heat transfer coefficient was different for the two drag models, especially at lower gas inlet velocities and small particle sizes.

Study on Hindered Diffusion of Single Polyelectrolyte Chain in Micro-Pores by Employing Brownian Dynamics Simulations (브라운 동력학 시뮬레이션에 의한 미세기공에서 단일한 다가전해질 사슬의 제한확산 연구)

  • 전명석;곽현욱
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.207-215
    • /
    • 2002
  • The hindered diffusion in confined spaces is an important phenomenon to understand in a micro-scale the filtration mechanism determined by the particle motion in membrane pores. Compared to the case of spherical colloids, both the theoretical investigations and the experiments on the hindered diffusion of polyelectrolytes is actually more difficult, due to lots of relevant parameters resulting from the complicated conformational properties of the polyelectrolyte chain. We have successfully performed the Brownian dynamics simulations upon a single polyeiectrolyte confined in a slit-like pore, where a coarse-grained bead-spring model incorporated with Debye-Huckel interaction is properly adopted. For the given sizes of both the polyelectrolyte and the pore width, the hindered diffusion coefficient decreases as the solution ionic concentration decreases. It is evident that a charge effect of the pore wall enhances the hindered diffusion of polyelectrolyte. Simulation results allow us to make sense of the diffusive transport through the micro-pore, which is restricted by the influences of the steric hindrance of polyelectrolytes as well as the electrostatic repulsion between the polyelectrolytes and pore wall.

$CO_2$ 클러스터 세정을 이용한 오염입자 제거에 관한 연구

  • Choe, Hu-Mi;Jo, Yu-Jin;Lee, Jong-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.482-482
    • /
    • 2013
  • 반도체 소자의 미세화와 더불어 세정공정의 중요성이 차지하는 비중이 점점 커지고, 이에 따라 세정 기술 개발에 대한 요구가 증대되고 있다. 기존 세정 기술은 화학약품 위주의 습식 세정 방식으로 표면 손상, 화학 반응, 부산물, 세정 효율 등 여러 가지 어려움이 있다. 따라서 건식세정 방식이 활발하게 도입되고 있으며 대표적인 것이 에어로졸 세정이다. 에어로졸 세정은 기체상의 작동기체를 이용하여 에어로졸을 형성하고 표면 오염물질과 직접 물리적 충돌을 함으로써 세정한다. 하지만 이 또한 생성되는 에어로졸 내 발생 입자로 인해 패턴 손상이 발생하며 이러한 문제점을 극복하기 위하여 본 연구에서는 가스클러스터 장치를 이용한 세정 특성 평가에 관한 연구를 수행하였다. 가스 클러스터란 작동기체의 분자가 수십에서 수백 개 뭉쳐 있는 형태를 뜻하며 이렇게 형성된 클러스터는 수 nm 크기를 형성하게 된다. 그리고 짧은 시간의 응축에 의해 수십 nm 크기까지 성장하게 된다. 에어로졸 세정과 다르게 클러스터가 성장할 환경과 시간을 형성하지 않음으로써 작은 클러스터를 형성하게 되며 이로 인해 패턴 손상을 최소화 하고 상대적으로 높은 효율로 오염입자를 제거하게 된다. 클러스터 세정 장비를 이용한 표면 처리는 충돌에 의한 제거에 기반한다. 따라서 생성 및 가속되는 클러스터로부터 대상으로 전달되는 운동량의 정도가 세정 특성에 영향을 미치며 이는 생성되는 클러스터의 크기에 종속적이다. 생성 클러스터의 크기 분포는 분사 거리, 유량, 분사 각도, 노즐 냉각 온도 등의 변수에 관한 함수이다. 따라서 본 연구에서는 $CO_2$ 클러스터를 이용한 세정 특성을 평가하기 위하여 이러한 변수에 따라서 오염 입자의 종류, 크기에 따른 PRE (particle removal efficiency)를 평가하고 다양한 선폭의 패턴을 이용하여 손상 실험을 수행하였다. 제거 효율에 사용된 입자는 $CeO_2$$SiO_2$이며, 각각 30, 50, 100, 300 nm 크기를 정량적으로 오염시킨 쿠폰 웨이퍼를 제조하여 세정 효율을 평가하였다. 정량적 오염에는 SMPS (scanning mobility particle sizer)를 이용한 크기 분류와 정전기적 입자 부착 시스템이 사용되었다. 또한 패턴 붕괴 평가에는 35~180 nm 선폭을 가지는 Poly-Si 패턴을 이용하였다. 실험 결과 클러스터 형성 조건에 따라 상대적으로 낮은 패턴 붕괴에서 95% 이상의 높은 오염입자 제거효율을 전반적으로 보이는 것을 확인할 수 있었다. 따라서 이론적 계산에 기반하여 세정에 요구되는 클러스터 크기를 가정하고, 이를 통하여 세정에 적용할 경우 높은 기존 세정 방법의 단점을 보완하면서 높은 세정 효율을 가지는 대체 세정 방안으로 이용할 수 있음을 확인하였다.

  • PDF