• Title/Summary/Keyword: 분자스케일

Search Result 68, Processing Time 0.024 seconds

A Study on Nanoscale Surface Polishing using Molecular Dynamics Simulations (분자동역학 시뮬레이션을 이용한 나노스케일 표면 절삭에 관한 연구)

  • Kang, Jeong-Won;Choi, Young-Gyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.49-52
    • /
    • 2011
  • This paper shows the results of classical molecular dynamics modeling for the interaction between spherical nano abrasive and substrate in chemical mechanical polishing processes. Atomistic modeling was achieved from 3-dimensional molecular dynamics simulations using the Morse potential functions for chemical mechanical polishing. The abrasive dynamics was modeled by three cases, such as slipping, rolling, and rotating. Simulation results showed that the different dynamics of the abrasive results the different features of surfaces. The simulation concerning polishing pad, abrasive particles and the substrate has same results.

특집:자연모사 그린테크놀로지 - 자연모사 지속가능 혁신 기술

  • Kim, Wan-Du;Im, Hyeon-Ui;Kim, Seong-Deok
    • 기계와재료
    • /
    • v.23 no.4
    • /
    • pp.6-15
    • /
    • 2011
  • 자연은 인간이 만들어낸 기술적 해결책들보다 현저히 적은 양의 에너지를 소비하며, 적은 물질로 다양한 구조를 창출해 내는 고효율 최적화 시스템이며, 스스로 정화작용과 선순환을 유지하는 환경 친화적 시스템이다. 이러한 자연에서 영감을 얻어 활용하고 응용하는 기술은 최근 나노-바이오기술의 급속한 발전과 더불어 새롭게 각광받는 융합기술 분야로 부각되고 있다. 나노스케일의 생체물질을 관찰하고 특성을 평가할 수 있는 고성능의 장비가 개발되고, 생체 물질을 분자 단위로 조합하고 합성하는 등의 첨단기술이 발전됨에 따라 자연모사기술도 새로운 전기를 마련하고 있다. 자연 생명체/생태계가 지닌 혁신적인 해결 가능성(Innovation Potentials)을 구현하기 위해서는 자연모사기술 분야에 좀 더 체계적이고 지속적인 관심과 지원을 기울여야 할 것이며, 이를 바탕으로 인류가 당면한 에너지 자원 기후변화 환경 문제 등의 글로벌 이슈를 극복하고 선순환의 개념의 자연모사 에코 기술과 지속가능한 혁신 기술 달성이 가능할 것으로 기대된다.

  • PDF

Multiscale Analysis on Expectation of Mechanical Behavior of Polymer Nanocomposites using Nanoparticulate Agglomeration Density Index (나노 입자의 군집밀도를 이용한 고분자 나노복합재의 기계적 거동 예측에 대한 멀티스케일 연구)

  • Baek, Kyungmin;Shin, Hyunseong;Han, Jin-Gyu;Cho, Maenghyo
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.323-330
    • /
    • 2017
  • In this study, multiscale analysis in which the information obtained from molecular dynamics simulation is applied to the continuum mechanics level is conducted to investigate the effects of clustering of silicon carbide nanoparticles reinforced into polypropylene matrix on mechanical behavior of nanocomposites. The elastic behavior of polymer nanocomposites is observed for various states of nanoparticulate agglomeration according to the model reflecting the degradation of interphase properties. In addition, factors which mainly affect the mechanical behavior of the nanocomposites are identified, and new index 'clustering density' is defined. The correlation between the clustering density and the elastic modulus of nanocomposites is understood. As the clustering density increases, the interfacial effect decreased and finally the improvement of mechanical properties is suppressed. By considering the random distribution of the nanoparticles, the range of elastic modulus of nanocomposites for same value of clustering density can be investigated. The correlation can be expressed in the form of exponential function, and the mechanical behavior of the polymer nanocomposites can be effectively predicted by using the nanoparticulate clustering density.

Investigation of Water Channel Formation in Sufonated Polyimides Via Mesoscale Simulation (메조스케일 전산모사를 통한 술폰화 폴리이미드의 수화채널 형성 연구)

  • Park, Chi Hoon;Lee, So Young;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.389-398
    • /
    • 2017
  • The most important characteristic of the polymer electrolyte membranes (PEMs) for fuel cells, the proton conducting ability is mainly influenced by the distribution and morphology of the water channels inside the PEMs. Non-perfluorinated hydrocarbon PEMs are known to have weaker water channels than perfluorinated PEM, Nafion, and thus relatively low proton conducting ability. In this study, we used a mesoscale simulation technique to observe the water channel formation and phase separation behavior of hydrocarbon PEM, sulfonated polyimides, under the humidification condition. It was observed that the water molecules were distributed evenly through the entire hydrophilic region, and clear water clusters were formed only in the sulfonated polyimide having high sulfonation degree. In addition, it was observed that sulfonated polyimides have a difficulty in forming water channel under the low hydrated condition. These results clearly support the theories of the formation of water channels in non-perfluorinated hydrocarbon PEMs, and also well explain the tendency of proton conducting abilities of sulfonated polyimides. Thus, it is confirmed that mesoscale simulation techniques can be very effective in analyzing phase separation behavior and water channel formation in PEMs for fuel cells and elucidating the ion conducting abilities.

Probe Diffusion and Viscosity Properties in Dimethyl Sulfoxide Solution of Poly(vinyl alcohol) with High Degree of Hydrolysis (고검화도의 폴리(비닐 알코올)/디메틸설폭사이드 용액에서의 점성도 특성과 탐침입자의 확산)

  • Eom, Hyo-Sang;Park, Il-Hyun
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.415-423
    • /
    • 2010
  • Poly(vinyl alcohol)(PVA) with high degree of hydrolysis of above 98% was dissolved in dimethyl sulfoxide(DMSO), and the shear viscosity was measured up to $C{\simeq}0.14\;g/mL$ in the semi-dilute solution regime. Next, as probe particle, polystyrene(PS) latex was introduced into this matrix system and its delayed diffusion due to polymer concentration was investigated by means of dynamic light scattering. When the solution viscosity of PVA/DMSO was plotted against the reduced concentration $C[{\eta}]$, which is scaled by the intrinsic viscosity, the molecular weight dependence was strongly appeared at C$[{\eta}]$ >2. Some heterogeneties in polymer solution were considered as its source. Contrary, the diffusion of probe particle in the matrix solution was observed as a single mode motion at whole concentration range but its ratio of its diffusion coefficient at solution to that at solvent, D/Do did not show any molecular weight dependence at all. However, the application limit of the stretched exponential function was disclosed at C$[{\eta}]$ >2.5.

Application of Computational Mineralogy to Studies of Hydroxyls in Clay Minerals (전산광물학을 이용한 점토광물 내의 수산기 연구 가능성)

  • Chae, Jin-Ung;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.271-281
    • /
    • 2014
  • The physicochemical properties of clay minerals have been investigated at the atomistic to nano scale. The microscopic studies are often challenging to perform by using experimental approaches alone. In particular, hydroxyl groups of octahedral sheets in 2:1 clay minerals have been hypothesized to impact the sorption process of metal cations; however, X-ray based techniques alone, a common tool for mineral structure examination, cannot properly test the hypothesis. The current study has examined whether computational mineralogy techniques can be applied to examine the hydroxyl structures of clay minerals. Based on quantum-mechanics and molecular-mechanics computational methods, geometry optimizations were carried out for representative dioctahedral and trioctahedral phyllosilicate minerals. Both methods well reproduced the experimental lattice parameters; however, for structural distortion occurring in the tetrahedral or octahedral sheets, molecular mechanics showed significant deviations from experimental data. The orientation angle of the hydroxyl with respect to (001) basal plane is determined by the balance of repulsion between the hydroxyl proton and Si cations of tetrahedral sites; the quantum-mechanics method predicted $25-26^{\circ}$ for the angle, whereas the angle predicted by the molecular-mechanics method was much higher by $10^{\circ}$ (i.e., $35^{\circ}$). These results demonstrate that computational mineralogy techniques are a reliable tool for clay mineral studies and can be used to further elucidate the roles of hydroxyls in metal sorption process.

Multi-scale simulation of drying process for porous materials using molecular dynamics (part 1 : homogenization method) (분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(1부 : 균질화법 해석))

  • 오진원;백성민;금영탁
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.115-122
    • /
    • 2004
  • When porous materials are dried, the particles flocculate into fish-net structure in gel phase. In order to exactly analyze the stress distribution of porous materials during drying process, the elastic tensor of microscopic gel structures has to be predicted considering pore shapes as well as porosities of porous materials. The elastic characteristics of porous materials associated with porosities were predicted analyzing microscopic gel structures with circular and cross pores via homogenization method and the drying processes of the electric porous ceramic insulator were simulated using finite element method (FEM). Comparing analysis results between consideration and negligence of pores, the deformed shape and distributions of temperature and moisture were similar but the residual stress was significantly different.

Prediction of Elastic Bending Modulus of Multi-layered Graphene Sheets Using Nanoscale Molecular Mechanics (나노스케일 분자역학을 이용한 다층 그래핀의 굽힘 탄성거동 예측)

  • Kim, Dae-Young;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.421-427
    • /
    • 2015
  • In this paper, a description is given of finite element method (FEM) simulations of the elastic bending modulus of multi-layered graphene sheets that were carried out to investigate the mechanical behavior of graphene sheets with different gap thicknesses through molecular mechanics theory. The interaction forces between layers with various gap thicknesses were considered based on the van der Waals interaction. A finite element (FE) model of a multi-layered rectangular graphene sheet was proposed with beam elements representing bonded interactions and spring elements representing non-bonded interactions between layers and between diagonally adjacent atoms. As a result, the average elastic bending modulus was predicted to be 1.13 TPa in the armchair direction and 1.18 TPa in the zigzag direction. The simulation results from this work are comparable to both experimental tests and numerical studies from the literature.

Current Status and Prospect of Nanopowder Technology (나노분말 기술의 현황 및 전망)

  • Park Jong-Ku
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2005.05a
    • /
    • pp.27-39
    • /
    • 2005
  • 나노기술은 21세기 초반 첨단산업을 이끌어갈 핵심기술 중의 하나로 여러 나라들이 국가적인 차원에서 전략적으로 개발하고 있다 나노기술은 초정밀 가공기술, 원자 혹은 분자 단위의 조립(조합)기술, 소재공정기술 등의 기술 분야를 포함하며 나노스케일 영역에서 나노소재를 이용(제조 및 가공)하여 새로운 응용분야를 창출해 내거나 기존 산업을 더욱 고도화하는데 기여하는 기술이다. 나노소재는 금속, 세라믹, 고분자, 생체물질 등의 특정 물질 영역에 국한되지 않고 다양한 형태, 다양한 물성을 갖고 있으며 나노기술 구현에 있어서 직접적인 대상 혹은 중간매체에 해당한다. 따라서 나노소재 기술은 대단히 광범위한 영역을 포함하는 나노기술의 바탕을 이루는 기반기술 또는 원천기술이라고 할 수 있다. 여러 형태의 나노소재 중에서 가장 저차원(0차원)의 물질에 해당하는 나노분말은 기술적으로 가장 실용화에 근접해 있으며 이미 많은 상용화 사례들이 나타나고 있다. 나노분말 기술은 기술 성숙도 측면에서뿐만 아니라 확장성(유용성), 신규성(혁신성) 측면에서 대단한 가능성을 갖고 있기 때문에 향후 대단히 빠른 속도로 시장이 확대될 전망이다. 본 발표에서는 나노분말 기술의 개발 현황 및 전망에 대하여 언급하고자 한다.

  • PDF

Current Status and Prospect of Nanopowder Technology (나노분말 기술의 현황 및 전망)

  • Park, Jong-Ku
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2005.05a
    • /
    • pp.27-39
    • /
    • 2005
  • 나노기술은 21세기 초반 첨단산업을 이끌어갈 핵심기술 중의 하나로 여러 나라들이 국가적인차원에서 전략적으로 개발하고 있다. 나노기술은 초정밀 가공기술, 원자 혹은 분자 단위의 조립(조합)기술, 소재공정기술 등의 기술 분야를 포함하며 나노스케일 영역에서 나노소재를 이용(제조 및 가공)하여 새로운 응용분야를 창출해내 거나 기존 산업을 더욱 고도화하는데 기여하는 기술이다. 나노소재는 금속, 세라믹, 고분자, 생체물질 등의 특정 물질 영역에 국한되지 않고 다양한 형태, 다양한 물성을 갖고 있으며 나노기술 구현에 있어서 직접적인 대상 혹은 중간매체에 해당한다. 따라서 나노소재기술은 대단히 광범위한 영역을 포함하는 나노기술의 바탕을 이루는 기반기술 또는 원천기술이라고 할 수 있다. 여러 형태의 나노소재 중에서 가장 저차원(0차원)의 물질에 해당하는 나노분말은 기술적으로 가장 실용화에 근접해 있으며 이미 많은 상용화 사례들이 나타나고 있다. 나노분말 기술은 기술 성숙도 측면에서 뿐만 아니라 확장성(유용성), 신규성(혁신성) 측면에서 대단한 가능성을 갖고 있기 때문에 향후 대단히 빠른 속도로 시장이 확대될 전망이다. 본 발표에서는 나노분말 기술의 개발 현황 및 전망에 대하여 언급하고자 한다.

  • PDF