• 제목/요약/키워드: 분자스케일

검색결과 68건 처리시간 0.027초

분자진동을 이용한 터널 배수공 막힘 억제의 실내시험 연구 (Laboratory Test of Molecular Vibration for Preventing Drainage Pipe Blockage in Deteriorated Tunnel)

  • 윤세환;박은형;이종휘;천병식
    • 한국지반공학회논문집
    • /
    • 제28권10호
    • /
    • pp.69-77
    • /
    • 2012
  • 최근 국내 터널들이 노후화됨에 따라 배수공 막힘현상이 가장 큰 문제점 중 하나로 보수대책 공법이 필요한 실정이다. 현재는 유지 관리용 Robot이나 Water Jet Cleaning공법 등으로 배수공 내 생성된 스케일을 제거하고 있지만 비용이 비싸고 주기적인 관리를 필요로 하는 단점을 가지고 있다. 본 연구에서는 터널 배수공 내의 스케일을 SEM-EDS와 XRD로 분석하였고, 침전물은 탄산칼슘($CaCO_3$)성분의 스케일로 calcite로 확인되었다. 침전물 생성 억제 및 제거를 위해 퀀텀스틱 신기술을 사용하여 개방형 배수시험, 순환식 폐쇄수조시험을 실시하였다. 무게측정분석, 육안분석, 경도변화분석을 통하여 요소기술로 인한 스케일 생성량이 확연히 줄었음을 확인하였다. 결과적으로 퀀텀스틱이 배수공 내 침전물 생성을 방지하는데 효과가 있음을 확인할 수 있었다.

Kapitza 열저항이 존재하는 나노복합재의 열전도 특성 예측을 위한 순차적 멀티스케일 균질화 해석기법에 관한 연구 (A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance)

  • 신현성;양승화;유수영;장성민;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제25권4호
    • /
    • pp.315-321
    • /
    • 2012
  • 본 연구에서는 분자동역학 전산모사와 유한요소해석 기반의 균질화 기법을 통해 나노복합재의 열전도 특성을 정확하고 효율적으로 예측할 수 있는 순차적 멀티스케일 균질화 해석기법을 제안하였다. 나노입자의 크기효과가 나노복합재의 유효 열전도 특성에 미치는 영향을 조사하기 위해 크기가 다른 구형 나노입자가 첨가된 나노복합재의 열전도 계수를 분자동역학 전산모사를 통해 예측했고, 그 결과 나노입자의 크기가 작아질수록 계면에서의 Kapitza열저항에 의해 나노복합재의 열전도 계수가 점차 감소하는 것으로 나타났다. 이러한 나노입자의 크기효과를 균질화 해석모델을 통해 정확하게 묘사하기 위해 Kapitza 열저항에 의한 계면에서의 온도 불연속 구간과 고분자 기지가 높은 밀도를 가지며 흡착되는 유효계면을 추가적인 상으로 도입하여 나노복합재를 입자, Kapitza 계면, 유효계면, 기지로 구성된 4상의 연속체 구조로 모델링하였다. 이후 순차적 멀티스케일 균질화 해석기법을 통해 유효계면의 열전도 계수를 나노복합재의 열전도 계수로부터 역으로 예측했으며, 이를 입자의 반경에 대한 함수로 근사하였다. 근사 함수를 토대로 다양한 입자 체적분율과 반경에 대한 나노복합재의 유효 열전도 특성을 예측하였으며, 유효계면에 대한 매개변수 연구를 수행하였다.

반도체 소재의 나노미터 스케일의 변형거동 해석 (Deformation pathway of semiconductor materials in nanometer scale)

  • 김동언;오수익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.518-520
    • /
    • 2007
  • Since all essential property of semiconductor materials are structure-sensitive, the understanding of the deformation mechanism and the deformed structure which can be formed in the nanometer-scale devices is very crucial. To investigate the deformation mechanism and the corresponding structures, nanometer-scale contact loading simulations are carried out using molecular dynamics in silicon and gallium-arsenide.

  • PDF

다상 유동 및 연소 해석에서 Lattice Boltzmann 방법의 응용 가능성에 대한 고찰 (Application of the lattice Boltzmann method to multiphase flow and combustion analysis)

  • 허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.3-8
    • /
    • 2001
  • LBM은 분자 운동을 직접 모사하지 않고 통계 역학적 원리에 기초하여 주어진 격자 구조 아래서 입자들의 단순 이동, 충돌 과정의 반복에 의해 유동을 모사하는 방법이다. 이미 다양한 열유동 현상들에 대한 응용 결과가 발표되었으며 병렬화, 단순한 프로그래밍 등의 장점으로 인해 앞으로 연소, 다상 유동, micro/nano 스케일 유동 등의 해석에 많은 가능성을 지니고 있다. 아직 국내에서는 이에 대한 소개가 제대로 이루어지지 못해 관련 분야의 연구자들이 충분한 관심을 갖고 있지 않은 것으로 생각되어 본 논문에서 LBM 방법에 대한 개략적인 소개를 시도하였다.

  • PDF

멀티스케일 해석을 통한 홀리데이 연결 물성 분석

  • 이재경;김태환
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.340-345
    • /
    • 2017
  • DNA 나노구조물을 설계 및 개발, 해석하기 위해서는 기본적인 홀리데이 연결(Holliday junction) 구조에 대한 물성을 아는 것이 필수적이다. 여러 실험 및 시뮬레이션을 통해서 홀리데이 연결 구조 물성을 측정하려는 시도가 많았지만, 아직까지도 홀리데이 구조에 대한 정확한 물성은 얻어지지 않았다. 이번 연구에서는 6HB-DNT 모델을 분자동역학 기법을 이용하여 DNT 모델의 물성을 분석하고, 이를 기반으로 유한요소 모델링을 통해 홀리데이 연결의 물성을 해석한다.

  • PDF

나노바이오 센서 /칩의 연구동향

  • 강지윤;김태송
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제17권4호
    • /
    • pp.5-15
    • /
    • 2004
  • 나노기술은 분자나 원자 단위에서 물성을 규명하고 조작하여 기존 재료의 물성개선은 물론 신재료 및 신소자를 개발할 수 있는 기술로서 활용도가 넓고 잠재가능성이 커서 선진국에서는 기술선점을 위해 정부차원에서 대규모 투자를 하고 있다. 특히 나노기술과 바이오기술의 접목인 나노바이오기술은 생명현상이 주로 나노스케일에서 일어나기 때문에 두 기술의 융합이 용이하기 때문에 많은 응용분야에 대한 연구가 이루어지고 있다.(중략)

  • PDF

탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계 특성 예측을 위한 멀티스케일 균질화 모델 개발 (Development of Multiscale Homogenization Model to Predict Thermo-Mechanical Properties of Nanocomposites including Carbon Nanotube Bundle)

  • 왕호림;신현성
    • Composites Research
    • /
    • 제33권4호
    • /
    • pp.198-204
    • /
    • 2020
  • 본 연구에서는 탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계적 특성을 정량적으로 예측하기 위하여 분자동역학 전산모사와 유한요소 기반 균질화 기법을 적용하였다. 응집된 탄소나노튜브의 수가 증가함에 따라 동일한 탄소나노튜브의 체적분율에도 불구하고, 면내 영률 및 면내 전단계수는 감소하였고, 면내 열팽창계수는 증가함을 확인할 수 있었다. 계면의 두께를 조사하기 위하여 밀도의 반경 방향 분포(Radial density distribution)을 조사하였으며, 계면의 두께는 탄소나노튜브의 수와는 거의 무관함을 확인할 수 있었다. 기지와 계면은 등방성 재료로 가정하였으며, 예측한 계면의 열-기계적 특성에 따르면, 응집된 탄소나노튜브의 수가 증가함에 따라 계면의 영률 및 전단계수는 감소하였으며, 열팽창계수는 반대로 증가하였다. 이를 토대로, 탄소나노튜브 다발을 포함하는 PLA 나노복합재료의 열-기계적 특성 예측을 위한 멀티스케일 균질화 모델을 개발하였다.

분자-연속체 하이브리드 기법을 이용한 구조물이 있는 나노 채널에서의 쿠에트 유동에 대한 수치적 연구 (Numerical Study on Couette Flow in Nanostructured Channel using Molecular-continuum Hybrid Method)

  • 김영진;정명근;하만영
    • 대한기계학회논문집B
    • /
    • 제41권6호
    • /
    • pp.429-434
    • /
    • 2017
  • 분자-연속체 하이브리드 기법은 연속체 유체역학으로 예측하기 어려운 마이크로/나노 스케일 유동에 대해 개발되고 발전해 왔다. 분자동역학은 고체표면 주변 영역에서 사용되고, 나머지 영역에서는 나비아스톡스 방정식이 사용된다. 본 연구에서는 나노채널에서 고체-액체 상호작용과 표면 거칠기의 영향을 연구하기 위해 분자-연속체 하이브리드 기법을 이용하여 쿠에트 유동을 해석하였다. 우리는 고체-액체 상호작용 힘인 표면 에너지와 표면 거칠기가 유동의 표면 경계조건에 영향을 주는 것을 발견하였다. 표면 에너지가 낮을 때에는 유동이 고체 표면에서 미끄러짐이 발생하였고, 표면 에너지가 증가함에 따라 미끄러짐의 크기가 감소하였다. 표면 에너지가 높을 때에는 로킹(locking) 경계조건이 형성되었다. 또한 표면 거칠기는 유동이 고체 표면에서 미끄러지는 것을 방해하여 로킹 경계조건이 잘 형성되도록 영향을 주었다.

MEMS 공정에서의 자기 조립 단분자층 기술 응용 (Applications of Self-assembled Monolayer Technologies in MEMS Fabrication)

  • 이우진;이승민;강승균
    • 마이크로전자및패키징학회지
    • /
    • 제30권2호
    • /
    • pp.13-20
    • /
    • 2023
  • 마이크로 전자기계 시스템 공정에서 표면 처리는 공정 방법의 일환이자 디바이스에 자체적인 기능을 부여하는 역할을 한다. 특히 자기 조립 단분자층은 마이크로 전자기계 시스템 공정에서 표면 개질 및 기능화를 수행하는 표면처리 방법으로 침지 시간과 용액 농도에 따라 강도를 정밀하게 조절할 수 있는 유기 단분자막이다. 고분자 기판이나 금속/세라믹 부품에 자발적으로 흡착되어 형성되는 자기 조립 단분자층은 표면 특성의 개질 뿐만 아니라 나노스케일 단위의 높은 정밀도로 하여금 양산용 리소그래피 기술 및 초민감 유기/생체분자 센서에도 응용되고 있다. 본 논문에서는 마찰 특성의 조절부터 생체 분자의 탐침 기능까지 자기 조립 단분자층 기술이 발전되어 응용되고 있는 다양한 분야들에 대해 소개한다.

나노스케일 워터젯 가공에 대한 분자시뮬레이션 연구 (Molecular Simulation of Nano-Scale Waterjet Machining)

  • 이상훈;김현준;김태욱
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.216-219
    • /
    • 2023
  • This study employs molecular dynamics simulations to investigate the material behavior of workpieces in waterjet machining processes. To gain fundamental insights into waterjet machining, simulations were conducted using pure water, excluding abrasive particles. The simulation model comprised thousands of water molecules interacting with a single crystal metal workpiece. Water molecule clusters were imparted with various velocities to initiate collisions with the metal workpiece. The material behavior of the metal surface was analyzed with respect to the applied velocity conditions, considering the intricate interplay between water molecules and the workpiece at the atomic scale. The results demonstrated that the machining of the metal workpiece occurred only when water molecules were endowed with velocities above a certain threshold. In cases where energy was insufficient, the metal workpiece exhibited a slight increase in surface roughness due to mild plastic deformation, without undergoing substantial material removal. When machining occurred, the ejection of material revealed a 3-fold symmetric pattern, confirming that material removal in waterjet machining of the metal workpiece is primarily driven by plastic deformation-induced material ejection. This research provides crucial insights into the mechanisms underlying waterjet machining and enhances our understanding of material behavior during the process. The findings can be valuable in optimizing waterjet machining techniques.