• 제목/요약/키워드: 분자모사

검색결과 180건 처리시간 0.024초

분자모사를 위한 그리드 컴퓨팅 시스템 개발 (Developing the Grid-Computing System for Molecular Simulation)

  • 김동욱;정갑주;황선태;정선호;이종현;김상선;최영진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.748-750
    • /
    • 2003
  • 분자모사 시뮬레이션은 일반 컴퓨터로는 수행이 불가능한 대량의 연산을 요구하기 때문에. 현재까지는 적극적으로 활용되는 한계가 있다. 그리드 컴퓨팅을 이용하여 요구되어지는 대량 컴퓨팅 파워를 해결할 수 있지만, 응용 특성에 최적화되게 설계된 그리드 컴퓨팅 시스템의 부재하기 때문에 활용되어지기 어렵다. 본 논문에서는 이러한 문제점 해결을 목표로 하는 분자모사에 최적화된 그리드 시스템 (Molecular Grid System) 구축에 관한 내용을 기술을 하고 있다.

  • PDF

흡착공정 개발을 위한 다중규모 모사: 활성탄에서의 n-Hexane 흡착에 관한 사례연구 (Multiscale Simulation for Adsorption Process Development: A Case Study of n-Hexane Adsorption on Activated Carbon)

  • 손혜정;임영일;유경선
    • Korean Chemical Engineering Research
    • /
    • 제46권6호
    • /
    • pp.1087-1094
    • /
    • 2008
  • 본 연구는 활성탄을 사용한 n-hexane의 흡착공정에 있어서 분자수준에서 시작하여 공정단계에 이르는 다중규모 모사에 관하여 기술한다. 분자모사에서는 GCMC(Grand Canonical Monte Carlo) 방법을 이용하여 활성탄에서 n-hexane의 등온흡착식을 예측하고, 2차원 전산유체역학(CFD; Computational fluid dynamics) 모사를 통하여 흡착컬럼 내 유체흐름에 대한 수력학적 특성을 파악한다. 공정모사단계에서는 분자모사 및 유체역학 모사에서 각각 얻은 등온흡착식과 축방향 확산계수값을 이용하여 n-hexane의 용출곡선을 얻는다. 이러한 3단계 다중규모 모사기법을 활용하여 얻은 공정모사 결과는 펄스응답의 실험결과와 비교해볼 때, 온도와 유량변화에 따른 1차 모멘트(평균 체류시간)에 관하여 약 20% 미만의 오차범위에서 일치함을 확인할 수 있다. 이 결과로부터 분자수준에서 시작하는 다중규모 모사는 필요한 실험횟수를 줄이면서 흡착공정 개발을 가속화할 수 있는 가능성을 보여준다.

Monte Carlo 모사, 그리고 분자동역학

  • 유동훈;이진호
    • 기계저널
    • /
    • 제44권3호
    • /
    • pp.55-63
    • /
    • 2004
  • 이 글에서는 마이크로와 나노스케일의 해석에 사용하는 수치모사 방법인 직접모사 몬테 카를로 (Direct Simulation Monte Carlo : DSMC)방법과 분자동역학(Molecular Dynamics: MD)과이 관계에 대하여 설명한다.

  • PDF

고분자 분리막 연구를 위한 전산모사 도구 소개 (Review on the Computer Simulation Tools for Polymeric Membrane Researches)

  • 최찬희;박치훈
    • 멤브레인
    • /
    • 제30권4호
    • /
    • pp.242-251
    • /
    • 2020
  • 고분자 소재 및 이를 이용하여 제조된 분리막에 주로 활용되는 전산모사 도구들은 모사대상의 크기 및 모사하고자 하는 시간에 따라 여러 가지 분야로 나뉘어진다. 본 총설에 소개되는 전산모사는 그 중에서 전산재료화학에 주로 사용되는 양자역학(quantum mechanics; QM), 분자동역학(molecular dynamics; MD), 메조스케일 전산모사(mesoscale modelling), 이렇게 3가지로 분류된다. 고분자 연구에서 사용되는 전산모사는 각각의 전산모사의 종류마다 연구내용이 달라지는데, 양자역학은 분자, 원자, 전자 등 미시적인 계의 현상을 다루어 작은 크기의 현상을 연구하고, 분자동역학은 원자들 사이의 퍼텐셜 또는 힘이 주어졌을 때 뉴턴의 운동방정식에 따른 원지 및 분자의 움직임을 수치적으로 풀어내고, 메조스케일 모델링은 원자들을 묶어서 그룹형태로 만들어 비드를 형성해 비교적 큰 분자량에서 계산시간을 줄여 거시적으로 판단하는 연구가 된다. 본 총설에서는 고분자 및 고분자 분리막에 주로 활용되는 다양한 전산모사 프로그램을 위에서 분류한 3가지 종류로 나누어 각각의 특징과 사용분야 등을 소개하고자 한다.

반복 하중을 받는 구리 나노와이어의 초탄성에 대한 분자 동역학 전산 모사 (Molecular Dynamics Simulation of Pseudoelasticity of Cu Nanowires under Cyclic Loading)

  • 조맹효;이상진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.247-250
    • /
    • 2009
  • 본 연구에서는 반복하중을 받는 구리 나노와이어에서 나타나는 초탄성 거동을 분자동역학 전산모사를 통해 해석하였다. 나노스케일에서는 표면적 대 부피비가 매우 크기 때문에 표면효과가 지배적으로 나타난다. 이로 인해 벌크상태에서는 보이지 않던 새로운 성질들이 나노크기에서 나타나는데, 이러한 효과로 인해 나노와이어의 경우에는 초탄성 거동을 보인다. 초탄성 거동은 나노와이어의 결정학적 방향의 재배열에 의한 것으로써, 하중을 받는 동안 나노와이어의 결정 구조는 변하지 않으며, 쌍정의 발생 및 쌍정계면의 전파에 의해 결정학적 방향이 재배열된다. 재배열에 의해 부분적으로 변형되었던 나노와이어는 하중을 제거하거나 하중의 방향이 바뀜에 따라 원래의 상태를 회복하는 거동을 보이게 된다. 본 연구에서는 분자 동역학 전산 모사를 통해 <100>/{100} 구리 나노와이어가 반복적인 압축-인장 거동 하에서 초탄성을 보이게 됨을 확인하였으며, 반복 하중 싸이클을 증가시키는 전산모사를 통해 나노와이어의 초탄성이 영구적으로 유지됨을 확인하였다.

  • PDF

나노입자의 크기효과와 체적분율 효과를 동시 고려한 나노복합재의 멀티스케일 브리징 해석기법에 관한 연구 (A Study on the Development of Multi-scale Bridging Method Considering the Particle Size and Concentration Effect of Nanocomposites)

  • 양승화;유수영;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.243-246
    • /
    • 2009
  • 본 연구에서는 분자동역학 전산모사와 미시역학 모델을 이용하여 나노입자의 크기와 체적분율 변화가 나노복합재의 물성변화에 미치는 영향을 효과적으로 묘사할 수 있는 순차적 브리징 해석기법을 개발하였다. 나노 입자의 크기변화와 체적분율 변화에 따른 영률과 전단계수를 분자동역학 전산모사를 통해 예측한 후, 이를 연속체 모델에서 구현하기 위해 다중입자 모델을 적용하였다. 나노입자의 크기효과를 반영하기 위해 입자와 기지 사이에 유효계면을 추가적인 상으로 도입하였고, 체적분율 효과는 나노복합재를 둘러싸는 무한영역의 물성값을 통해 조절되도록 하였다. 유효계면과 무한영역의 물성을 입자의 반경과 체적분율의 함수로 근사한 후, 다양한 입자의 크기와 체적분율에서 나타나는 나노복합재의 물성변화를 예측하였다. 제안된 해석기법의 적용을 통해 분자동역학 전산모사 결과와 잘 일치하는 예측해를 효과적으로 얻을 수 있었다.

  • PDF

입자의 크기효과를 고려한 나노복합재료의 열탄성 물성의 멀티스케일 해석 (Multiscale Analysis of the Thermoelastic Properties of Nanocomposites Considering Particle Size Effect)

  • 최준명;유수영;양승화;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.119-122
    • /
    • 2011
  • 분자동역학 전산모사를 통하여 에폭시에 다양한 반경의 구형 실리콘 카바이드를 삽입한 나노복합재를 모델링하고, 이들의 기계적 물성과 열적 물성 해석을 다양한 온도조건 하에서 수행하였다. 전산모사 결과 동일한 체적분율 하에서 나노복합재는 입자의 크기가 작아질수록 탄성계수와 전단계수가 상승하는 동시에 선팽창계수는 감소하는 입자의 크기효과를 보였다. 또한 온도 상승에 따른 기계적 물성의 하락이 잘 관찰되었다. 본 연구에서는 이러한 분자동역학 해석 결과를 바탕으로 다양한 온도조건 하에서의 입자의 크기효과를 고려한 멀티스케일 3상 모델을 제시하였다. 유리상 조건 범위에서 온도 변화에 따른 나노복합재 계면의 열응력텐서와 열변형률텐서의 정보를 통해 복합재 내에서 계면이 차지하는 부피비를 온도에 대한 함수로 고려하고, 이를 멀티스케일 모델에 반영함으로써 다양한 온도조건에 대한 나노복합재 열탄성 물성의 예측해를 제시하였다. 본 연구에서 제시한 모델에서 계산된 3상 복합재의 물성은 분자동역학 전산모사의 결과에서 나타나는 나노입자의 크기효과를 잘 반영하였다.

  • PDF

성간 물질에서 발견되는 분자들 사이의 상관 관계를 이해하기 위한 전산 모사 연구 (Understanding Correlations among Observed Interstellar Molecules with Numerical Simulations)

  • 윤정관;곽규진
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.73.1-73.1
    • /
    • 2019
  • 성간 물질의 분광선 관측을 통해 측정된 분자들의 기둥 밀도 사이에 상관 관계가 존재하는 것이 알려져 있다. 가령 같은 시선 방향을 따라 측정된 H2, CO, CH 분자의 기둥 밀도가 서로 선형 상관 관계를 갖고 있음이 최근 밝혀졌다. 이러한 분자들의 상관 관계는 분자 구름의 물리, 화학적 기원 및 성질과 관련이 있을 것으로 추측되지만 아직까지 상관 관계를 설명하기 위한 연구는 활발히 이루어지지 않고 있다. 본 연구에서는 성간 물질 혹은 구름 모형의 전산 모사를 통해 이러한 상관 관계를 재현함으로써 성간분자 구름의 물리적 특성, 화학적 조성, 그리고 환경 변수들을 영향을 이해하려고 한다. 성간 분자 구름의 화학적 조성이 시간에 따라 변화하는 것을 계산하기 위해 Astrochem을 이용하였다.

  • PDF

분자동역학을 이용한 분리막용 소재로 사용되는 고분자 소재의 신장거동 연구 (Elongation Behavior of Polymeric Materials for Membrane Applications Using Molecular Dynamics)

  • 강호성;박치훈
    • 멤브레인
    • /
    • 제32권1호
    • /
    • pp.57-65
    • /
    • 2022
  • 최근 들어 컴퓨터 및 소프트웨어 기술의 발달로 전산모사 관련 연구가 급격하게 늘어나고 있는데, 특히 원자의 개수 및 모델 크기의 문제로 기존에는 많은 제약을 받던 고분자 관련 다양한 전산모사 결과들이 발표되고 있다. 본 연구에서는 고분자 소재를 필름형태의 분리막으로 활용하기 위한 중요한 특성 중 하나인 기계적 특성을 분자동역학 전산모사를 이용하여 분석하고자 하는 연구를 진행하였다. 이를 위하여 이미 관련 물성이 널리 보고되어 있는 상용 고분자 소재인 polyethylene (PE)과 polystyrene (PS)을 대상으로 선정하여 주쇄길이 차이를 통한 각 고분자들의 인장특성을 비교하였고, 최종적으로 분자동역학 전산모사의 기계적 특성 분석이 적합한지 확인하고자 하였다. 밀도, radius of gyration, scattering 분석을 통해 본 연구에서 제작된 모델이 실제 실험에서 얻어진 기계적 특성 경향과 잘 일치함을 알 수 있었고, 따라서 분자동역학 전산모사를 이용한 기계적 특성 분석이 다양한 고분자 소재들의 분자 구조에 따른 기계적 특성을 예측할 수 있게 해주며, 실제 실험에서는 적용하기 어려운 다양한 변수들을 반영한 기계적 특성 해석도 가능하게 해 줄 것으로 기대된다.