• Title/Summary/Keyword: 분자모델링

Search Result 95, Processing Time 0.024 seconds

멀티스케일 해석을 통한 홀리데이 연결 물성 분석

  • Lee, Jae-Gyeong;Kim, Tae-Hwan
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.340-345
    • /
    • 2017
  • DNA 나노구조물을 설계 및 개발, 해석하기 위해서는 기본적인 홀리데이 연결(Holliday junction) 구조에 대한 물성을 아는 것이 필수적이다. 여러 실험 및 시뮬레이션을 통해서 홀리데이 연결 구조 물성을 측정하려는 시도가 많았지만, 아직까지도 홀리데이 구조에 대한 정확한 물성은 얻어지지 않았다. 이번 연구에서는 6HB-DNT 모델을 분자동역학 기법을 이용하여 DNT 모델의 물성을 분석하고, 이를 기반으로 유한요소 모델링을 통해 홀리데이 연결의 물성을 해석한다.

  • PDF

Study of Mechanical and Hygroscopic Characteristics of Nanoclay/Epoxy Nanocomposites (나노클레이/에폭시 나노-복합재료의 기계적 및 흡습 특성에 관한 연구)

  • Kim, Do Hyoung;Kim, Jung Kyu;Kim, Hak Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.139-145
    • /
    • 2016
  • In this study, the moisture related hygroscopic characteristics and mechanical properties of epoxy-clay nanocomposites were investigated by experiments as a function of the weight fraction of nanoclay. The hygroscopic and mechanical properties including the moisture saturation amount, moisture diffusivity, adhesive strength, and tensile properties were obtained by moisture absorption test and various tensile tests, respectively. Also, the molecular dynamics (MD) simulation was devised to study of hygroscopic characteristics of nanocomposites and the results were compared to experimental results as a function of the nanoclay content. It was demonstrated that the proposed MD simulation technique can be successfully used for the prediction of the effects of the nanoclay on the moisture diffusion characteristics.

Molecular Dynamics and Micromechanics Study on Mechanical Behavior and Interfacial Properties of BNNT/Polymer Nanocomposites (분자동역학 전산모사와 미시역학 모델을 이용한 질화붕소 나노튜브/고분자 복합재의 역학적 물성 및 계면특성 예측)

  • Choi, Seoyeon;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.247-253
    • /
    • 2017
  • In this study, the mechanical behavior and interface properties of boron nitride nanotube-poly(methyl methacrylate) nanocomposites are predicted using the molecular dynamics simulations and the double inclusion model. After modeling nanocomposite unit cell embedding single-walled nanotube and polymer, the stiffness matrix is determined from uniaxial tension and shear tests. Through the orientation average of the transversely isotropic stiffness matrix, the effective isotropic elastic constants of randomly dispersed microstructure of nanocomposites. Compared with the double inclusion model solution with a perfect interfacial condition, it is found that the interface between boron nitride nanotube and polymer matrix is weak in nature. To characterize the interphase surrounding the nanotube, the two step domain decomposition method incorporating a linear spring model at the interface is adopted. As a result, various combinations of the interfacial compliance and the interphase elastic constants are successfully determined from an inverse analysis.

Structural Analysis and Shape Optimization for Rotor of Turbomolecular Pump Using P-Method (P-기법을 이용한 터보분자펌프 로터의 구조해석 및 형상최적설계)

  • Won, Bo Reum;Jung, Hae Young;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1279-1289
    • /
    • 2013
  • In recent times, turbomolecular pumps (TMPs) have been used frequently to generate and maintain high and clean vacuum. Because of the high-speed rotation of the rotor, its structural safety should be treated as the first design concern. This paper presents the structural analysis and optimization of rotor blades of a TMP. To increase the numerical efficiency in the finite element modeling and analysis, the P-method provided in Pro/ENGINEER was used for simulation. The structural responses for several types of rotor blades were investigated, and the effects of the blade angle, blade length, and round size are thoroughly studied for each type of TMP blade. In addition, structural optimization to reduce and even the maximum stress at each stage of the TMP by changing the size of rounds between the blade and the hub was performed very successfully by using the P-method.

Modeling and Theoretical Analysis of Thermodynamic Characteristic of Nano Vibration Absorber (나노 진동 흡수기의 모델링 및 열역학적 특성 해석에 대한 이론적 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.93-99
    • /
    • 2003
  • In this study, new shock absorbing system is proposed by using nano-technology based on the theoretical analysis. The new shock absorbing system is complementary to the hydraulic damper, having a cylinder-piston-orifice construction. Particularly for new shock absorbing system, the hydraulic oil is replaced by a colloidal suspension, which is composed of a porous matrix and a lyophobic fluid. The matrix of the suspension is consisted of porous micro-grains with a special architecture: they present nano-pores serially connected to micro-cavities. Until now, only experimentally qualitative studies of new shock absorbing system have been performed, but the mechanism of energy dissipation has not been clarified. This paper presents a modeling and theoretical analysis of the new shock absorbing system thermodynamics, nono-flows and energy dissipation. Compared with hydraulic system, the new shock absorbing system behaves more efficiently, which absorb a large amount of mechanical energy, without heating. The theoretical computations agree reasonably well with the experimental results. As a result. the proposed new shock absorbing system was proved to be an effective one, which can replace with the conventional one.

Hydrogen adsorption experiments with IRMOF-3 as a sorbent, and the molecular modeling studies on the functionalized MOFs (IRMOF-3 의 수소 흡착 실험 및 Organic Linker 의 작용기에 따른 분자모델링 연구)

  • Lee, Eungsung;Oh, Youjin;Yoon, Jihye;Kim, Jaheon;Kim, DaeJin;Lee, Tae-Bum;Choi, Seung-Hoon;Lee, Jun;Cho, Sung June
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.108-118
    • /
    • 2004
  • To find out rational design and synthetic strategies toward efficient hydrogen storage materials, molecular modeling and quantum mechanical studies have been carried out on the MOFs(Metal-Organic Frameworks) having various organic linkers and nanocube frameworks. The calculation results about the free volume ratio, surface area, and electron density variation of the frameworks indicated that the capacity of the hydrogen storage of MOFs was largely dependent on the specific surface area and electron localization around benzene ring rather than the free volume of MOFs. The prediction of the modeling study could be supported by the hydrogen adsorption experiments using IRMOF-1 and -3, which showed more enhanced hydrogen storage capacities of IRMOF-3 compared with the IRMOF-1's at both experimental conditions, 77K, ∠ $H_2$ 1 atm and ambient temperature, ∠ $H_2$ 35 atm.

Formulation Optimization of Salad Dressing Added with Bokbunja (Rubus coreanum Miquel) Juice (복분자(Rubus coreanum Miquel) 즙을 이용한 드레싱 제조의 재료 혼합 비율의 최적화)

  • Jung, Su-Ji;Kim, Na-Young;Jang, Myung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.497-504
    • /
    • 2008
  • This study was conducted for the optimization of ingredients in salad dressing using Bokbunja (Rubus coreanum Miquel) juice. The experiment was designed according to the D-optimal design of mixture design, which included 14 experimental points with 4 replicates for three independent variables (Bokbunja juice $15.70\sim47.10%$, oil $23.50\sim39.20%$, vinegar $3.90\sim19.60%$). The compositional and functional properties of the prepared products were measured, and these values were applied to the mathematical models. A canonical form and trace plot showed the influence of each variable on the quality attribute of final mixture product. By the use of F-test, viscosity, color values (L, a, and b), emulsion stability and sensory characteristics (color) were expressed by a linear model, while the color values (L) and sensory characteristics (smell, taste, and overall acceptance) were by a quadratic model. The optimum formulations by numerical and graphical method were analogous: Bokbunja juice, oil and vinegar of 36.02%, 26.48%, and 12.00% by numerical method, respectively; those of 36.00%, 26.44%, and 12.06% by graphical method, respectively.

Simulation of Design Factor Effects on Performance of Vacuum System (진공시스템 성능에 대한 설계인자 영향 전산모사)

  • Kim, Hyung-Taek;Jeong, Kwang-Pil
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.405-413
    • /
    • 2007
  • Effect of design factors on the performance of vacuum system was simulated for optimum design of system. In this investigation, the feasibility of modelling mechanism for $VacSim^{Multi}$ simulator was proposed. Simulation results of pumping design factor showed the possibilities of simulation fore-study for the detailed design factors. Simulation of roughing pump presented the expected pumping behaviors based on the specifications of commercial pump. Application of booster pump exhibited the high pumping efficiency for middle vacuum range. Combinations of optimum backing pump for diffusion and turbo vacuum system were obtained. And, the characteristics of process application of both systems were also acquired.

전자기기 나노튜브 메모리의 분자 동역학 모델링

  • Lee, Jun-Ha;Kim, Hyeong-Jin;Gang, Sin-Hye;Ju, Yeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.203-206
    • /
    • 2007
  • 연속 전자 모델과 결합된 종래의 분자 동역학 방법은 원자 사이의 힘과 원자의 전기용량에 의해 야기되는 탄소 나노튜브의 구부러지는 성질의 특성을 해석하였다. 탄소 원자의 전기 용량은 탄소 원자의 길이에 따라 변하였다. 본 연구는 11.567nm($L_{CNT}$)의 길이와 $0.9{\sim}1.5nm(H)$의 안쪽 깊이를 가진 (5,5) 탄소 나노튜브 브리지로 MD 시뮬레이션을 수행하였다. 탄소 나노튜브는 금 표면에 부딪힌 후 탄소 나노튜브 브리지는 약 ${\sim}1{\AA}$의 크기로 금 표면에서 진동하며, 크기는 차츰 감소하였다. $H{\leq}1.3nm$일 때, 탄소 나노튜브 브리지는 첫 번째 충돌 후에 금 표면과 계속 접촉해 있었고, $H{\leq}1.4nm$일 때, 탄소 나노튜브 브리지는 몇 번의 충돌 후에 금 표면과 안정한 접촉상태가 되었다. $H/L_{CNT}$가 0.13보다 작을 때, 탄소 나노튜브 초소형 전자기기 메모리는 반영구적인 비활성의 메모리 장치가 되는 반면에 $H/L_{CNT}$가 0.14보다 클 때 탄소 나노튜브 초소형 전자기기 메모리는 휘발성이거나 스위치 장치로 동작할 수 있다.

  • PDF

Quantitative Estimation of Radiation Damage in Reactor Pressure Vessel Steels by Using Multiscale Modeling (멀티스케일 모델링을 이용한 압력용기강의 조사손상 정량예측)

  • Lee, Gyeong-Geun;Kwon, Junhyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.113-121
    • /
    • 2014
  • In this work, an integrated model including molecular dynamics and chemical rate theory was implemented to calculate the growth of point defect clusters(PDC) and copper-rich precipitates(CRP) which could change the mechanical properties of reactor pressure vessel(RPV) steels in a nuclear power plant. A number of time-dependent differential equations were established and numerically integrated to estimate the evolution of irradiation defects. The calculation showed that the concentration of the vacancies was higher than that of the self-interstitial atoms. The higher concentration of vacancies induced a formation of the CRPs in the later stage. The size of the CRPs was used to estimate the mechanical property changes in RPV steels, as is the same case with the PDCs. The calculation results were compared with the measured values of yield strength change and Charpy V-notch transition temperature shift, which were obtained from the surveillance test data of Korean light water reactors(LWRs). The estimated values were in fair agreement with the experimental results in spite of the uncertainty of the modeling parameters.