• Title/Summary/Keyword: 분위회귀 분석기법

Search Result 13, Processing Time 0.023 seconds

A Study on Estimation of Soil Moisture Multiple Quantile Regression Model Using Conditional Merging and MODIS Land Surface Temperature Data (조건부 합성기법과 MODIS LST를 활용한 토양수분 다중분위회귀모형 산정 연구)

  • Jung, Chung Gil;Lee, Ji Wan;Kim, Da Rae;Kim, Se Hun;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.23-23
    • /
    • 2018
  • 본 연구에서는 다중분위회귀분석모형(Multiple Quantile Regression Model, MQRM)과 MODIS(MODerate resolution Imaging Spectroradiometer) LST (Land Surface Temperature) 자료를 이용하여 전국 공간토양수분을 산정하였다. 공간토양수분을 산정하기 위한 과정은 크게 두가지로 구분된다. 첫 번째로 기존의 MODIS LST 자료를 조건부 합성 보정기법을 적용하여 실측 LST 자료와 비교하여 위성 LST 자료가 갖고 있는 오차를 보정하였다. 그 결과, 조건부 합성 보정기법을 적용하기전 전국 71개 지상관측지점에서 관측한 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.70으로 어는정도 유의성 있는 상관관계를 나타냈으나 조건부 합성 보정기법을 적용한 후 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.92로 상당히 크게 향상됨을 알 수 있었다. 두 번째로 보정된 MODIS LST를 이용하여 다중분위회귀분석 모형을 개발하고 토양수분을 예측하는 단계로 입력자료로 위성영상 자료와 관측자료를 융합하여 사용하였다. 위성영상 자료로는 보정된 MODIS LST와 MODIS NDV를 구축하였고 일단위 강수량 및 일조시간의 기상자료는 기상청으로부터 전국 71개 지점에 대해 구축하여 IDW 공간보간기법을 이용한 공간자료로 구축하였다. 토양수분 결과를 비교하기 위한 관측 토양수분은 자동농업기상관측(Automated Agriculture Observing System, AAOS)지점에서 2013년 1월부터 2015년 12월까지의 실측 일단위 토양수분 자료를 구축하여 사용하였다. 다중분위회귀분석 모형은 LST 인자를 중심으로 각각의 분위(0.05, 0.25, 0.5, 0.75, 0.95)에 해당되는 값의 회귀식을 NDVI, 강수 입력자료를 독립인자로서 조합하여 계절 및 토성에 따른 총 80개의 회귀식을 산정하였다. 관측 토양수분과 모의 토양수분을 비교한 결과 $R^2$가 0.70 (철원), 0.90 (춘천), 0.85 (수원), 0.65 (서산), 0.78 (청주), 0.82 (전주), 0.62 (순천), 0.63 (진주), 0.78 (보성)로 높은 상관성을 보였다. 본 연구에서는 다중분위회귀 모형의 성능을 검증하기 위해 기존의 다중선형회귀모형의 결과와 비교하여 크게 개선됨을 나타냈다.

  • PDF

Comparison of Regression Coefficient Significance Test for Temporal Distribution by Multiple Regression Analysis Method (다중회귀분석 방법에 따른 시간분포 회귀식의 회귀계수 유의성 검정 비교)

  • Lee, Sung Ho;Lee, Jae Joon;Park, Jin Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.205-205
    • /
    • 2019
  • 우리나라에서 강우의 시간분포를 위해 보편적으로 사용되고 있는 방법은 Huff 4분위법으로 강우의 시간적 분포특성을 나타내는 무차원 시간분포곡선을 제시한 것으로, 강우의 지속기간을 4분위로 구분하여 각 분위의 강우량 중 가장 큰 값이 속해 있는 구간을 선택하여 그 구간의 위치에 따라 분위를 정하는 방법이다. 현재 실무에서는 Huff의 분위별 곡선에 대한 회귀식은 지속기간 전반에 걸쳐 정확도가 높은 이유로 6차식을 적용하고 있으나, 통계 모델링에서 간결함의 원리에 따라 회귀식이 간결할 필요가 있으며, 통계적 유의수준에 기초하여 회귀계수를 결정하여야 하므로 유의성 검정 방법을 통한 검정결과를 비교할 필요가 있다. 따라서 본 연구에서는 다중회귀분석 방법에 따른 회귀계수 유의성 검정결과 비교를 위하여 구미지역의 무차원 누가우량 백분율을 이용한 시간분포 회귀식을 이용하여 유의성 검정 방법인 분산분석 방법(Analysis of Variance)과 변수선택 방법(Backward Selection)의 검정 결과를 도출 및 비교하였다. 통계프로그램인 프로그래밍 R을 이용하여 변수선택 방법 중 후방제거법 함수를 이용하여 최종 회귀식을 도출하고 또한 7차 회귀식을 분산분석을 이용한 후방제거법으로 회귀계수를 제거하는 방법으로 최종 회귀식을 산정하였다. 분산분석을 이용한 후방제거법의 유의성 검정결과는 프로그래밍 R을 이용한 후방제거법의 결과와 동일한 것으로 분석되었다. 일반적으로 설계강우량의 시간분포를 위한 방법으로 사용되고 있는 Huff의 4분위 방법의 시간분포 회귀식은 회귀계수의 유의성 검정이 이루어지고 있지 않으므로 본 연구결과를 통해 설계강우량 시간분포 회귀식의 유의성 검정방법 제시 및 결과도출과정을 통해 시간분포 회귀식 산정기법으로 활용할 수 있을 것으로 사료된다.

  • PDF

Generation of radar rainfall data for hydrological and meteorological application (I) : bias correction and estimation of error distribution (수문기상학적 활용을 위한 레이더 강우자료 생산(I) : 편의보정 및 오차분포 산정)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Jang, Sang-Min;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Information on radar rainfall with high spatio-temporal resolution over large areas has been used to mitigate climate-related disasters such as flash floods. On the other hand, a well-known problem associated with the radar rainfall using the Marshall-Palmer relationship is the underestimation. In this study, we develop a new bias correction scheme based on the quantile regression method. This study employed a bivariate copula function method for the joint simulation between radar and ground gauge rainfall data to better characterize the error distribution. The proposed quantile regression based bias corrected rainfall showed a good agreement with that of observed. Moreover, the results of our case studies suggest that the copula function approach was useful to functionalize the error distribution of radar rainfall in an effective way.

Glass ceiling in arts and culture professionals: Between J and R industries (문화예술분야 전문인력에 대한 유리천장효과 분석: J산업과 R산업 중심으로)

  • Chan, Jong-Sub;Heo, Shik
    • Review of Culture and Economy
    • /
    • v.21 no.2
    • /
    • pp.3-28
    • /
    • 2018
  • This study focuses on analyzing the glass ceiling effect in arts and culture professionals through the quintile decomposition applied to the RIF unconditional quantile regression and Oaxaca-Blinder decomposition technique. From the industrial viewpoint, we divide arts and culture professionals into cultural contents professionals(large category J industry) and arts professionals(large category R industry). For our analysis, we employ the pooling data of 'Wage Structure Survey' from 2009 to 2016. Our results are summarized as follows. First, as OLS wage decomposition showed that the gender wage gap among the arts professionals was lower than cultural contents professionals, but the discrimination portion of total gender wage gap was larger. Second, from quintile regression decompositions, the glass ceiling effects of two types of professionals showed different results. Cultural contents sector was observed with the "steady glass ceiling effect" as the portion of the discrimination was continuously increased, while the arts sector was observed with the "limited glass ceiling effect" as the discrimination had drastically increased in the 80s and 90s.

University Hierarchy and Labor Market Outcome - Wage Differentials between Provincial and Seoul Metropolitan Area University Graduates - (대학서열과 노동시장 성과 - 지방대생 임금차별을 중심으로 -)

  • Oh, Hoyoung
    • Journal of Labour Economics
    • /
    • v.30 no.2
    • /
    • pp.87-118
    • /
    • 2007
  • Using KRIVET's Graduates Economic Activities Survey for 2005, this article examines the relationship between university ranking and labor market outcome, with a focus on wage differentials existing between provincial and Seoul metropolitan area university graduates. According to the analysis results, the average monthly wage for provincial university graduates was 1,747.7 thousand Korean won, which is 11.5% lower than that for graduates of universities in the Seoul metropolitan area. School effects on individual wage were estimated to about 12.2% after applying Hierarchical Linear Model technique, which means that university explains only an insignificant part of the total variance in wage among graduates. After controlling for the selection bias, the ability difference between the two areas, by applying the Heckman type 2SLS wage function and Neumark wage differential decomposition technique, the wage gap resulting from the segregation was not identified. This implies that, to a significant extent, the wage gap between provincial and Seoul metropolitan university graduates is attributed to the difference in productivity among individual graduates, rather than to the wage segregation. Also, the estimated wage function by applying Quantile Regression technique indicates that there does not exist any significant wage segregation difference by wage quantile.

  • PDF

A stacking ensemble model to improve streamflow forecasts at medium range forecasts through hydrological regionalization over South Korea (한국 유역의 지역화를 통해 유출량 예측을 개선하기 위한 수문학적 후 처리된 스태킹 앙상블 모형)

  • Lee, Dong Gi;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.182-182
    • /
    • 2021
  • 본 연구에서는 1일부터 최대 7일까지의 시간을 두고 남한 전체의 유출량에 대한 예측 모형을 제시하고자 한다. 이를 위하여 LSM (Land Surface Model) 모형을 사용하여 유출량을 모의하였고 이 과정에서 미 계측치에 대한 유출량을 예측하기 위하여 Xgboost (Extreme Gradient Boost)를 활용하여 매개변수를 지역화하였다. 이러한 지역화 기법을 통하여 남한 전체의 유출량에 대한 그리드화 된 유출값을 얻을 수 있었다. 또한 본 연구에서는 기상 예측자료를 유출량에 대한 예측으로 변환하기 위하여 Stacking 앙상블 기반의 수문학적 후처리 기법을 사용하였다. Stacking 앙상블 기법은 Base-learner와 Meta-learner의 조합으로 이루어 지는데 본 연구에서 새롭게 사용되는 패널티 기반의 분위회귀분석 방법론은 기존의 방법론과의 비교에 있어서 유용한 것으로 파악되었다. 결과적으로 본 연구에서는 총 7일의 앞선 시간의 예측에 있어서 한반도 전체의 유출량에서 비교적 짧은 시간에 대한 예측인 1일과 2일에서의 예측은 실질적으로 사용이 가능한 것으로 파악되었다.

  • PDF

A Study on the Performance Evaluation of Machine Learning for Predicting the Number of Movie Audiences (영화 관객 수 예측을 위한 기계학습 기법의 성능 평가 연구)

  • Jeong, Chan-Mi;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2020
  • The accurate prediction of box office in the early stage is crucial for film industry to make better managerial decision. With aims to improve the prediction performance, the purpose of this paper is to evaluate the use of machine learning methods. We tested both classification and regression based methods including k-NN, SVM and Random Forest. We first evaluate input variables, which show that reputation-related information generated during the first two-week period after release is significant. Prediction test results show that regression based methods provides lower prediction error, and Random Forest particularly outperforms other machine learning methods. Regression based method has better prediction power when films have small box office earnings. On the other hand, classification based method works better for predicting large box office earnings.

Application of multiple linear regression and artificial neural network models to forecast long-term precipitation in the Geum River basin (다중회귀모형과 인공신경망모형을 이용한 금강권역 강수량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.723-736
    • /
    • 2022
  • In this study, monthly precipitation forecasting models that can predict up to 12 months in advance were constructed for the Geum River basin, and two statistical techniques, multiple linear regression (MLR) and artificial neural network (ANN), were applied to the model construction. As predictor candidates, a total of 47 climate indices were used, including 39 global climate patterns provided by the National Oceanic and Atmospheric Administration (NOAA) and 8 meteorological factors for the basin. Forecast models were constructed by using climate indices with high correlation by analyzing the teleconnection between the monthly precipitation and each climate index for the past 40 years based on the forecast month. In the goodness-of-fit test results for the average value of forecasts of each month for 1991 to 2021, the MLR models showed -3.3 to -0.1% for the percent bias (PBIAS), 0.45 to 0.50 for the Nash-Sutcliffe efficiency (NSE), and 0.69 to 0.70 for the Pearson correlation coefficient (r), whereas, the ANN models showed PBIAS -5.0~+0.5%, NSE 0.35~0.47, and r 0.64~0.70. The mean values predicted by the MLR models were found to be closer to the observation than the ANN models. The probability of including observations within the forecast range for each month was 57.5 to 83.6% (average 72.9%) for the MLR models, and 71.5 to 88.7% (average 81.1%) for the ANN models, indicating that the ANN models showed better results. The tercile probability by month was 25.9 to 41.9% (average 34.6%) for the MLR models, and 30.3 to 39.1% (average 34.7%) for the ANN models. Both models showed long-term predictability of monthly precipitation with an average of 33.3% or more in tercile probability. In conclusion, the difference in predictability between the two models was found to be relatively small. However, when judging from the hit rate for the prediction range or the tercile probability, the monthly deviation for predictability was found to be relatively small for the ANN models.

A Development of Nonstationary Frequency Analysis Model using a Bayesian Multiple Non-crossing Quantile Regression Approach (베이지안 다중 비교차 분위회귀 분석 기법을 이용한 비정상성 빈도해석 모형 개발)

  • Uranchimeg, Sumiya;Kim, Yong-Tak;Kwon, Young-Jun;Kwon, Hyun-Han
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.119-131
    • /
    • 2017
  • Global warming under the influence of climate change and its direct impact on glacial and sea level are known issue. However, there is a lack of research on an indirect impact of climate change such as coastal structure design which is mainly based on a frequency analysis of water level under the stationary assumption, meaning that maximum sea level will not vary significantly over time. In general, stationary assumption does not hold and may not be valid under a changing climate. Therefore, this study aims to develop a novel approach to explore possible distributional changes in annual maximum sea levels (AMSLs) and provide the estimate of design water level for coastal structures using a multiple non-crossing quantile regression based nonstationary frequency analysis within a Bayesian framework. In this study, 20 tide gauge stations, where more than 30 years of hourly records are available, are considered. First, the possible distributional changes in the AMSLs are explored, focusing on the change in the scale and location parameter of the probability distributions. The most of the AMSLs are found to be upward-convergent/divergent pattern in the distribution, and the significance test on distributional changes is then performed. In this study, we confirm that a stationary assumption under the current climate characteristic may lead to underestimation of the design sea level, which results in increase in the failure risk in coastal structures. A detailed discussion on the role of the distribution changes for design water level is provided.

3D Human Reconstruction from Video using Quantile Regression (분위 회귀 분석을 이용한 비디오로부터의 3차원 인체 복원)

  • Han, Jisoo;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.264-272
    • /
    • 2019
  • In this paper, we propose a 3D human body reconstruction and refinement method from the frames extracted from a video to obtain natural and smooth motion in temporal domain. Individual frames extracted from the video are fed into convolutional neural network to estimate the location of the joint and the silhouette of the human body. This is done by projecting the parameter-based 3D deformable model to 2D image and by estimating the value of the optimal parameters. If the reconstruction process for each frame is performed independently, temporal consistency of human pose and shape cannot be guaranteed, yielding an inaccurate result. To alleviate this problem, the proposed method analyzes and interpolates the principal component parameters of the 3D morphable model reconstructed from each individual frame. Experimental result shows that the erroneous frames are corrected and refined by utilizing the relation between the previous and the next frames to obtain the improved 3D human reconstruction result.